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Experimental Realization of Quantum Games on a Quantum Computer
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We generalize the quantum prisoner’s dilemma to the case where the players share a nonmaximally
entangled states. We show that the game exhibits an intriguing structure as a function of the amount of
entanglement with two thresholds which separate a classical region, an intermediate region, and a fully
quantum region. Furthermore this quantum game is experimentally realized on our nuclear magnetic

resonance quantum computer.
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In 1982, Feynman [1] observed that quantum-
mechanical systems have an information-processing capa-
bility much greater than that of classical systems, and could
thus potentially be used to implement a new type of pow-
erful computer. Three years later Deutsch [2] described a
quantum-mechanical Turing machine, showing that quan-
tum computers could indeed be constructed. Although the
theory is well understood, actually building a quantum
computer has proved extremely difficult. Up to now, only
three methods have been used to demonstrate quantum
logical gates: trapped ions [3], cavity QED [4] and NMR
[5]. Of these methods, NMR has been the most successful
with realizations of quantum teleportation [6], quantum
error correction [7], quantum simulation [8], quantum
algorithms [9], and others [10]. In this Letter, we add
game theory [11] to the list: Quantum games can be
experimentally realized on a nuclear magnetic resonance
quantum computer.

Recently a new application of quantum information to
game theory has been discovered [12—17]. Game the-
ory is an important branch of applied mathematics. It is
the theory of decision making and conflict between differ-
ent agents. Since the seminal book by von Neumann and
Morgenstern [18], modern game theory has found appli-
cations ranging from economics through biology [19,20].
In the process of a game, whenever a player passes his
decision to other players or the game’s arbiter, he com-
municates information. Therefore it is natural to consider
the generalization when the information is quantum, rather
than classical [12,13]. It should also be noted that many
problems in quantum information theory can be considered
as quantum games, for instance, quantum cloning [21],
quantum cryptography [22], and quantum algorithms [13].

The prisoner’s dilemma is a famous game in classical
game theory and has been extended into quantum domain
by Eisert et al. [12]. Their work was based on the maxi-
mally entangled state. In this Letter, we generalize the
quantum prisoner’s dilemma to the case where the players
share nonmaximally entangled states. We show that the
game exhibits an intriguing structure as a function of the
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amount of entanglement. In addition, we have realized this
quantum game on our nuclear magnetic resonance quan-
tum computer. We believe that it is the first explicit physi-
cal realization of such a quantum game.

Let us now briefly recall the quantum prisoner’s
dilemma presented in Ref. [12]. There are two players,
and the players have two possible strategies: cooperate (C)

and defect (D). The payoff table for the players is shown
in Table I. Classically the dominant strategy for both play-
ers is to defect (the Nash equilibrium) since no player can
improve his/her payoff by unilaterally changing his/her
own strategy, even though the Pareto optimal is for both
players to cooperate. This is the dilemma. In the quantum
version, (see Fig. 1), one starts with the product state
|C)|C). One then acts on the state with the entangling gate
J to obtain |¢f;) = J|CC) = (|CC) + i|DD))//2. The
players now act with local unitary operators/ﬁ 4 and U B

on their qubit. Finally, the disentangling gate J* is carried
out and the system is measured in the computational basis,
giving rise to one of the four outcomes |CC), |CD), |DC),
and |DD). I/f Uy /gn/c\l Up are restricted to the classical strat-

egy space (C = I,D = id,), one then recovers the classi-
cal game. If one allows quantum strategies of the form

~ _[e'®cosh/2 sinf/2
U, ¢) —< —sinf/2 e i¢ cos0/2>’ 1

with 0 <@ < 7 and 0 < ¢ < 7/2, then there exists
a new Nash equilibrium, labeled Q ® Q, with the pay-
off (3,3). It has the property of being Pareto optimal,
therefore the dilemma that exists in the classical game is

TABLE 1. Payoff matrix for the prisoner’s dilemma. The first
entry in the parentheses denotes the payoff of Alice and the
second of Bob.

Bob: 6 Bob: D
Alice: C (3,3) 0,5)
Alice: D (5,0) (1,1)
© 2002 The American Physical Society 137902-1
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The setup for the two-player quantum game.

resolved. It was pointed out in Ref. [12] that, if one al-
lows any local operations, then there is no longer a unique
Nash equilibrium.

In this present Letter we generalize the Eisert et al.
scheme by taking the entangling operation to have the
form |¢;) = J|CC) = cos(y/2)|CC) + isin(y/2) |DD),
where y € [0, 7/2] measures the entanglement of the
initial state. We shall restrict ourselves to strategies of
the form of Eq. (1). We will show that an intriguing
structure emerges as 7y is varied from 0 (no entan-
glement) to 7r/2 (maximally entanglement); namely,
the game has two thresholds, vy = arcsiny/1/5 and
Y2 = arcsiny/2/5. Figure 2 indicates Alice’s expected
payoff for y = y1/2. In this case the game has features
similar to the separable game with y = 0 (see Ref. [12]).
Indeed for 0 < y < 7yu;, the quantum game b/e\:have/\s
“classically,” i.e., the only Nash equilibrium is D ® D
and the payoffs for the players are both 1, which is the
same as in the classical game. Figure 3 shows Alice’s
expected payoff with y = (Y1 + vwm2)/2. Assuming
Bob chooses D = U (IZT, 9), Alice’s best strategy is Q =
U(0,7/2) with A$A(Q,D) = 5sin’y; while assuming
Bob’s strategy is Q, Alice’s optimal reply is D with $4(D,
Q) = 5cos?y. Since the game is symmetric, the same
holds for Bob. Thus, D ® D is no longer a Nash equi-

FIG. 2. Alice’s payoff for y = /2. In this and the follow-
ing two plots, we have chosen a parametrization such that the

strategies U, and Up each depend on a single parameter 1 €
[-1,1]: Uy = U(tm,0) for t € [0,1] and Uy = U(0, —t7/2)
for t € [—1, 0] (same for Bob). Cooperation 6 corresponds to
the value ¢ = 0, defection 5 tot =1, and @ tot = —1.
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librium because each player can improve his/her payoff
by unilaterally deviating from the strategy D. How-
ever, two new Nash equilibria @ ® ﬁ and ﬁ ® é
appear. :\Fhis feaglre holds for ymi <7y < ym2. In
deed, $4[U(6, ¢),D] =Asin2(0/2) + 5cos%(8/2)sin>¢ X
sin’y and $,[U(0, ¢), 0] = 4 — cosh + [—-3 + 2cosf) —
cos?(6/2) co/s\2qé\] sin’y; Ahence §A[U(0, ¢),D]<5 X
sin’y = $4(Q, D) and $,[U (8, $), 0] < 5cos’y = $4(D,
Q) for all § €[0,7] and ¢ € [0, 7/2], respectively.
Analogously $B(5, II}B) < $B(5, é) = 5sin’y and $B(é,
l:\}g) <A$B(é,ﬁ) = Scos?y for all II}B. SoD ® é and
Q ® D are both Nash equilibria, with the feature that the
payoff for the player who adopts strategy D is better than
that of the player who adopts Q. Thus, in this regime the
quantum game does not resolve the dilemma. But for y >
Yth2 quantum strategies resolve the dilemma. In Fig. 4 we
depict Alice’s payoff as a function of the strategies Uy
and Up with y = (ym2 + 7/2)/2. This figure is similar
to the one for the maximally entangled game in Ref. [12].
It can be shown that Q ® Q is a unique equilibrium not
only for y = (ym2 + 7/2)/2 but also for any y € [Vth2,
7/2]. Hence a novel Nash equilibrium Q ® Q arises
with payoff $4(Q, Q) = $5(Q,Q) = 3, which has the
property of being Pareto optimal [19]. The dilemma
that exists in the classical game is removed as long as
the game’s entanglement exceeds the threshold yy,, =
arcsiny/2/5 = 0.685, even though the game’s initial state
is not maximally entangled.

Figure 5 indicates Alice’s payoff as a function of the
parameter y when both players resort to the Nash equilib-
rium. The two thresholds are analogous to phase transi-
tions. When the amount of entanglement is less than the
smaller threshold, one is in a classical region. When the
amount of entanglement lies between the two thresholds,
one is in a transition region between classical and quantum
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FIG. 3. Alice’s payoff for y = (ym1 + Ywm2)/2. The parame-
trization is chosen as in Fig. 2.
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FIG. 4. Alice’s payoff for y = (yn2 + 7/2)/2. The parame-
trization is the same as Fig. 2.

behavior. The last domain is the fully quantum region. Itis
surprising that, in the transition region, both Nash equilib-
riaresult in an unfair game, even though the structure of the
game is symmetric with respect to the interchange of the
two players. We think that the reasons for the asymmetry
are as follows: (i) Since the definition of Nash equilib-
rium allows multiple Nash equilibria to coexist, the solu-
tions may be degenerated. Therefore the definition itself
allows the possibility of such an asymmetry. This situa-
tion is similar to spontaneous symmetry breaking. (ii) If
we consider the two Nash equilibria as a whole, they are
fully equivalent and the game remains symmetric. But, fi-
nally, the two players have to choose one from the two
equilibria. This also causes the asymmetry of the game.
This quantum game was implemented using our two
qubit NMR quantum computer, described in Ref. [23].
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FIG. 5. The expected payoff for Alice as a function of the
measure of the parameter y when both players resort to Nash
equilibrium. The line corresponds to theoretic calculation and
the crosses to the experimental results. For ym < v < Yo,
the dashed line (dotted line) represents Alice’s payoff when the

Nash equilibrium is 5 ® @ (@ ® 5).
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This computer uses the two spin states of 'H nuclei
of partially deuterated cytosine in a magnetic field as
qubits, while radio frequency (1f) fields and spin-spin
couplings between the nuclei J4p = 7.17 Hz are used
to implement quantum logic gates. Experimentally, we
performed nineteen separate sets of experiments with the
entanglement of the player’s qubits given by y = n /36
(n =1{0,1,2,...,18}). The y = 0 (n = 0) corresponds
to the Eisert er al separable game, and y = 7/2
(n = 18) corresponds to their maximally entangled quan-
tum game. In each set, the full process of the quantum
game shown in Fig. 1 was executed. The details of the
process are as follows: (i) The quantum game starts with
the computer in the unentangled pure state |CC), but with
an NMR quantum computer it is impossible to begin in a
true pure state. Using the methods of Cory et al. [24] it
is, however, possible to create an effective pure state, which
behaves in an equivalent manner. (ii) The initial entangled

state is obtained by applying the entangling gate J =
exp{iyD ® D/2} which was performed with the pulse
sequence shown in Fig. 6, where the time period r = y/
(mJap). (iii) Players Alice and Bob execute their strategic
moves (the Nash equilibrium) described as local unitary
operations Uy ® Up. As shown above, Us ® Usp is deter-
mined by the value of y = 7Jt = nar/36. Experimen-
tallyy, D® D (0<1vy < yw, i€, n= {0,1,2,3,4},\5})
was implemented using a nonselective 180y pulse; D ®
0(Q ® D) (ym1 < ¥ < Ym, ie, n={6,7}) was im-
plemented by performing a selective 1805 pulse on Alice’s
(Bob’s) qubit, while a selective pulse sandwich 902, —
1\80; N 905 was performed on Bob’s (Alice’s) qubit; and
000 (var <y <m/2, ie, n=1{8,9,...,18}) was
implemented using a composite nonselective pulse sand-
wich 902, — 1807 — 90y. (iv) Finally, the disentangling
gate J© = exp{—iyD ® D/2} (the inverse of J) is ap-
plied before the measurement. The pulse sequence to im-
plement J ™ is the same as in Fig. 6, except for ¢ = (27/7\' -

v)/(mJ4sg). Thus the final state |r) = |r(Uas, Up))
of the game prior to measurement is given by

[y = ./]\J’(l/}A ® UB).I]\|CC>.

X X X
1 1
2 2

X X X
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FIG. 6. NMR pulse sequence used to implement the entangling
gate J. The narrow boxes correspond to 90° pulses, whereas
wide boxes are 180° pulses; the upper and lower lines refer to
the nuclear spins corresponding to Alice’s and Bob’s qubits,
respectively; the phase of each pulse is written above it.
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In NMR experiments, it is not practical to determine
the final state directly, but an equivalent measurement can
be made by so-called quantum state tomography to re-
cover the density matrix p = |W;)(W,| [5]. Then the
expected payoff was determined using the numerical val-
ues of the payoff table of prisoner’s dilemma by the $4 =
3Pcc + 5Ppc + Ppp and $5 = 3Pcc + 5Pcp + Ppp,
where P, = (ad’'|p|loa’) is the probability of finding
the eigenstate |oo”) (with >, ,ieqc py Poor = D).

All experiments were conducted at room tempera-
ture and pressure on the Bruker Avance DMX-500
spectrometer in the Laboratory of Structure Biology,
University of Science and Technology of China. Alice’s
payoffs as a function of the parameter y (the measure
of entanglement) in our NMR experiments are shown in
Fig. 5. The computations shown in Fig. 1 took less than
300 ms, which was well within the decoherence time
T, = 3 s. The relationship between the player’s payoff
and the parameter y in the quantum game is clearly
seen in Fig. 5, with good agreement between theory and
experiment. The relative error is less than 8%. The errors
are primarily due to inhomogeneity of the magnetic field,
imperfect 90° and 180° pulses, and the variability over
time of the measurement process.

In summary, it was shown in Ref. [12] that the classical
prisoner’s dilemma can be generalized into a quantum
game, and that when a maximally entangled state is
employed the dilemma disappears. We used the same
physical model as Eisert et al., but introduced a new
parameter y, which measures the amount of entanglement
in the quantum game. As y varies, novel features appear:
there are two thresholds, vy and 7y, which separate the
classical region, an intermediate region where two Nash
equilibrium coexist, and a fully quantum region where the
dilemma disappears. The fact that the dilemma can be
removed as long as the game’s entanglement exceeds a
certain threshold vy, is very much as in quantum cryp-
tography and computation, where the superior perfor-
mance of the quantum system depends strongly on the
amount of entanglement. Furthermore, we realized this
scheme experimentally on our two-qubit ensemble quan-
tum computer. These experimental results demonstrate
how a NMR quantum computer can load an initial state,
enable each player to perform his/her quantum strategic
moves, and readout the payoffs. This reveals a new
domain of application for quantum computers.

We thank J. Eisert, J.W. Pan and Y.D. Zhang for
helpful discussion and S. Massar for a careful reading of
the manuscript. This work was supported by National Na-
ture Science Foundation of China (Grants No. 10075041
and No. 10075044) and Science Foundation of USTC for
Young Scientists.

Note added.—Since this work was carried out we have
generalized it in three ways: First, we have considered
the correlations between entanglement and quantum games
for different sets of strategies [17]. Second, we have
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considered three-player entanglement enhanced quantum
games [25]. Finally, we analyzed how the thresholds yu1,
vi2 vary when the parameters in the payoff table are
changed [26].
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