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We propose a method for measuring spin Hamiltonians and apply it to the spin-1�2 Heisenberg anti-
ferromagnet Cs2CuCl4, which shows a 2D fractionalized resonating valence bond state at low fields. By
applying strong fields we fully align the spin moment of Cs2CuCl4, transforming it into an effective fer-
romagnet. In this phase the excitations are conventional magnons and their dispersion relation measured
using neutron scattering give the exchange couplings directly, which are found to form an anisotropic
triangular lattice with small Dzyaloshinskii-Moriya terms. Using the field to control the excitations we
observe Bose condensation of magnons into an ordered ground state.
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Understanding strongly correlated physics poses formi-
dable mathematical difficulties and in only a few excep-
tional cases has the full many-body quantum problem been
solved. Although theory takes the Hamiltonian (H ) as its
starting point, linking experimental data to this is often
not possible. A method for measuring H directly would
bridge this gap to theoretical approaches and in addition
reveal the essential ingredients from which exotic quan-
tum states emerge. Motivated by this we combine neutron
scattering with high magnetic fields and make just such a
determination of H taking the remarkable quantum mag-
net Cs2CuCl4 as a subject. We base our approach on over-
coming spin couplings using large fields thus transforming
the system into an effective ferromagnet, an easily solv-
able state. In addition we explore how the ordered ground
state evolves with lowering field and interpret the results
in the framework of Bose-Einstein condensation (BEC) of
magnons.

The insulating magnet Cs2CuCl4 is an ideal subject for
two reasons: First, its relatively weak (�4 K) couplings
can be overcome by current fields (at 8.44 T), and sec-
ond, it shows highly unusual strongly correlated properties
[1]. Among the most fascinating are a low-field dynamics
dominated by 2D highly dispersive continua characteristic
of fractionalization of spin waves into spin-1�2 spinons,
exceptionally strong quantum renormalizations, and an un-
explained T � 0 disordered phase induced by weak fields
along b and c. Although Anderson first proposed a 2D
fractionalized state in 1973 (the resonating valence bond
state), the essential conditions for its existence have re-
mained highly contentious [2]. In light of this establish-
ing what the special ingredients are in the Hamiltonian of
Cs2CuCl4 is therefore very important.

The origins of strongly correlated phases lie in the un-
certainty principle. For quantum magnets uncertainty is
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embedded in the noncommutation of the spin vector com-
ponents S � �Sx , Sy, Sz � and the “true” direction of S can-
not be known. For spins SR on a lattice R coupled by the
Heisenberg exchange Hamiltonian

H �
1
2

X
R,d

JdSR ? SR1d 2 gmBB
X
R

Sz
R (1)

the energy depends simultaneously on all three noncom-
muting components of each SR (d is a vector between
sites and the last term an attendant magnetic field). Quan-
tum uncertainty appears as a kinetic term �S1

R S2
R1d 1

S2
R S1

R1d� in the action on the spins which is most extreme
for spin-1�2 where it flips pairs of spins, e.g., "# to #", and
the magnet fluctuates between many spin configurations.
Semiclassically this kinetic action correlates particle mo-
tions (and creation) with others and can be so strong that
new phases emerge as in Cs2CuCl4.

When large enough, the field B in (1) prevails over
the exchanges and the unique situation arises where the
ground state of H is known and the one-particle ex-
cited states are exactly solved. The ground state con-
sists of all spins up, which we denote C0 � j0�, E0 �
2NgmBBS 1 N�2

P
d JdS2, which is indeed that of a fer-

romagnet. There are N orthonormal states with a single
spin flip cR � S2

R �
p

2S j0� corresponding to all sites R.
When H acts on cR, it generates only other such one-
spin-flip states because the total spin Sz

T �
P

R Sz
R is a

constant-of-the-motion for H . Because the Hamiltonian
is invariant upon translation plane-wave states are diag-
onal: ck � N21�2

P
R exp�2ik ? R�cR where H ck �

E�k�ck. The kinetic term causes hopping of these spin
flips through the lattice and the energy eigenvalues (for
spins S � 1�2) are
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VOLUME 88, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 1 APRIL 2002
E�k� � E0 1 gmBB 2 J0 1 Jk, Jk �
1
2

X
d

Jdeik?d

(2)

so that the one-spin-flip excitations disperse relative to
the ground state with the relation h̄vk � E�k� 2 E0 �
gmBB 2 J0 1 Jk, which is a constant term plus Jk,
the Fourier transformed exchange couplings. These
excitations are the familiar quantized harmonic spin-wave
modes, magnons, which carry DSz � 21 and have Bose
statistics. Since neutrons are spin-1�2 particles they
scatter only by changing the total spin by DS � 0, 61.
For a system prepared in the fully aligned state j0�
neutrons can scatter inelastically only by exciting a single
magnon through the matrix element j	ckjS

2
k j0�j2 where

S2
k � N21�2

P
R exp�2ik ? R�S2

R . Jk and so Jd of
Eq. (1) can then be found from the measured dispersion
h̄vk.

The crystal structure of Cs2CuCl4 is orthorhom-
bic (Pnma) [3] with lattice parameters at 0.3 K of
a � 9.65 Å, b � 7.48 Å, and c � 12.26 Å. The mag-
netic S � 1�2 Cu21 ions are situated within distorted
CuCl22

4 tetrahedra. Layers (bc plane) of these tetrahedra
are separated by Cs1 ions and are stacked with an
offset giving the structure illustrated in Fig. 1(a). The
strongly correlated physics derives from the “isosceles”
triangular lattice arrangement of spins in the layers
with antiferromagnetic exchange paths J � J
0,1,0� and
J0 � J
0,1�2,61�2�. The triangular geometry allows a large
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FIG. 1. (a) Magnetic couplings in a 2D triangular layer in
Cs2CuCl4: strong bonds J (heavy lines k b), smaller frustrating
zigzag bonds J 0 (thin lines). Da are the Dzyaloshinskii-Moriya
(DM) couplings along the zigzag bonds; the signs ≠,Ø refer
to interactions originating at the central spin SR , see Eq. (3).
(b) Odd (black) and even (gray) layers are stacked successively
along a (interlayer spacing a�2) with an offset z � 0.34 along
c. J 00 (dashed arrow) is the nearest-neighbor interlayer exchange.
(c) (b�, c�) reciprocal plane showing the near-hexagonal Bril-
louin zones (thin lines) of the triangular lattice in (a). Black
points are zone centers (t ) and gray points at t 6 Q mark dis-
persion gap minima in the saturated phase (B . BC) and where
Bragg peaks appear below BC .
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configuration space for fluctuations and is presumably
crucial to fractionalization.

To measure h̄vk the V2 cold-neutron triple-axis spec-
trometer at the BER-II reactor at HMI in Berlin was used.
A large (3.6 g) high-quality single crystal of Cs2CuCl4
was mounted in the �0, k, l� scattering plane on a dilu-
tion refrigerator insert with base temperature of 50 mK.
The VM-1 cryomagnet provided fields up to 14.5 T along
a. The spectrometer was configured with a vertically fo-
cused monochromator (PG002) and a horizontally focused
PG002 analyzer to select scattered neutrons with fixed
kf � 1.2 or 1.35 Å21.

A magnetic field of 12 T, much larger than the saturation
field (8.44 T), was used to open a significant energy gap
of 0.435(8) meV to the first excited states. Temperatures
below 200 mK ensured that the thermally introduced popu-
lation of spin flips was less than 1 per 1011 spins. No mag-
netostructural distortions were observed and the origin of
superexchange in high-energy electronic bonds means that
the coupling constants are unperturbed by the field. Only
one magnon scattering events were observed and their en-
ergy and wave vector dependence mapped out. Figure 2(c)
shows a typical scan. Two resolution limited peaks are seen
separated by a small energy of 0.084(2) meV; this splitting
is due to an additional anisotropy as explained below.

The measured one-magnon dispersion relations are
graphed in Fig. 2(a). The considerable dispersion along
both 
0k0� and 
00l� in the bc plane indicates strong
2D character. The overall dispersion follows h̄vk
with Jk � J cos�2pk� 1 2J0 cos�pk� cos�pl�, where
J � 0.374�5� meV and J 0 � 0.128�5� meV, the cou-
plings in Fig. 1(a) [k � �h, k, l� is expressed in units
of �2p�a, 2p�b, 2p�c�]. The small splitting into two
magnon branches is characterized well by modified
dispersions h̄v

6
k � gmBB 2 J0 1 Jk 6 Dk, Dk �

2Da sin�pk� cos�pl� with Da � 0.020�2� meV. This is
surprising because whereas Jk is a sum of cosine terms,
Dk is sinusoidal. The physical meaning of this is that a left
moving magnon (of a certain type) has different energy
from a right moving one h̄v

6
k fi h̄v

6
2k ; the two magnon

branches actually cross over at k � 0, h̄v
6
k � h̄v

7
2k ,

and such a situation can come about only if an exchange
with a sense of direction is present.

Dzyaloshinskii and Moriya (DM) [4] proposed just such
an exchange interaction many years ago. They showed that
spin-orbit couplings in the superexchange can generate a
coupling of the form Dij ? �Si 3 Sj�. Their interaction
is of higher order and therefore much weaker than Heisen-
berg exchange and can occur only when the superexchange
pathways do not have centers of inversion, which is indeed
the case in Cs2CuCl4.

In the ordered structure (below TN � 620 mK and B �
0) the moments lie almost within the bc plane which would
happen if the most important Dij vector in Cs2CuCl4 was
directed along the a axis, and the observed wave vector
dependence, sin�pk� cos�pl�, of Dk suggests that the im-
portant DM interaction is along the same zigzag bonds as
137203-2
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FIG. 2. (a) Magnetic dispersion relations in the saturated phase
(B � 12 Tka, T , 0.2 K) along symmetry directions in the 2D
plane [heavy dashed lines in Fig. 1(c)]. Solid and dashed lines
are fits to Eq. (4) with parameters in Table I. (b) Observed inte-
grated inelastic intensity compared with predictions for the fully
polarized eigenstate (solid line). (c) Excitations line shape ob-
served along a constant-wavevector scan at the minimum gap
k � �0, 1.447, 0�. The solid line is a fit to Eqs. (4) and (5)
convolved with the instrumental resolution (horizontal gray bar
indicates the full width at half maximum of the energy resolu-
tion).(d) Relative intensity of the two magnon modes compared
with Eq. (5) (solid line).

J0 in the 2D planes. Considering these bonds only, and
making the approximation that D6 � �6Da, 0, 0� � D6

a
we obtain using symmetry

H 6
DM �

1
2

X
R

D6
a ? SR

3 
2SR1d1
2 SR1d2

1 SR1d3
1 SR1d4

� , (3)

where the labels d124 refer to Fig. 1(a) and the 6 has
been introduced because there are two distinct layers
shown in Fig. 1(b) which are inverted versions of each
other with DM vectors pointing in opposite directions.
Like the Heisenberg coupling this DM interaction also
conserves Sz

T and plane-wave solutions remain diagonal;
H

6
DMck � 6Dkck where Dk � 2Da sin�pk� cos�pl� as

observed. The DM interaction then explains the observed
sinusoidal components of h̄v

6
k and the fact that there are

two modes —one for each type of layer.
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The fact that Cs2CuCl4 orders three dimensionally
means that there must be an interaction J00

k between
layers. We introduce operators a

y
k and b

y
k that create the

two types of magnons on the different layers. The full
Hamiltonian with DM and interlayer couplings is

H �
X
k


ay
k b

y
k �

3

"
h̄Vk 2 J 00

0 1 Dk J 00
2k

J 00
k h̄Vk 2 J 00

0 2 Dk

# "
ak

bk

#
,

where h̄Vk � gmBB 2 J0 1 Jk is the magnon dispersion
for Dk � J 00

k � 0. Diagonalizing this Hamiltonian gives
the new dispersion relations

h̄v6
k � h̄Vk 2 J 00

0 6

q
D2

k 1 jJ 00
k j

2 , (4)

and for the case of interlayer nearest neighbor coupling
[see Fig. 1(b)] [J 00

k � J 00 cos�ph�e2i2plz ] the relative in-
tensity of the two modes is

I1
k

I2
k

�
1 1 cos�2plz � sin�2uk�
1 2 cos�2plz � sin�2uk�

, (5)

with uk � tan21
J 00 cos�ph���
q

D2
k 1 jJ 00

k j
2 1 Dk�� and

where the total inelastic intensity I1
k 1 I2

k is indepen-
dent of wave vector. Here z � 0.34 is the relative offset
along c between adjacent layers. Fitting the above model
[Eqs. (4) and (5)] to the data yields the excellent fits shown
in Figs. 2(a)–2(d) with the fitted parameters listed in the
first column of Table I and ga � 2.19�1�. The total in-
elastic intensity shown in Fig. 2(b) is nearly independent
of k as predicted. The relative intensity of the two modes
(where they could be resolved) is shown in Fig. 2(d). We
conclude that all other couplings in Cs2CuCl4 are much
smaller. Dipolar energies and g-tensor anisotropies are
small and neglected here.

Upon decreasing field the magnon energies reduce by
the additive Zeeman term gmBB [see Fig. 3(a)]. At the
critical field BC � 8.44�1� T the gap closes at the dis-
persion minima t 6 Q, Q � �0.5 1 e�b�, e � 0.053�1�.
At those wave vectors Bragg peaks appear below BC in-
dicating transverse (off-diagonal) long-range order. This
order is an example of BEC in a dilute gas of magnons in-
duced by changing the “chemical potential” jBC 2 Bj [5].
The measured spin order forms an elliptical cone around
the field direction 	SR� � 6b̂Sb cosQ ? R 1 ĉSc sinQ ?

R 1 âSa (odd/even 6 layers contrarotate) where Sb . Sc

TABLE I. Hamiltonian parameters �B . BC� (see text) versus
the quantum renormalized parameters obtained by fitting B � 0
results to classical spin-wave theory (from [1]).

Parameter B . BC B � 0 Renormalization

J (meV) 0.374(5) 0.62(1) 1.65(5)
J 0 (meV) 0.128(5) 0.117(9) 0.91(9)
J 00 (meV) 0.017(2) · · · · · ·
Da (meV) 0.020(2) · · · · · ·

e (rlu) 0.053(1) 0.030(2) 0.56(2)
137203-3
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FIG. 3. (a) Magnon energies vs field in the saturated phase.
Solid lines are fits to a linear behavior as expected for DSz �
21 eigenstates with g factor ga � 2.18�1�. �0, 0.447, 1�6 label
the two magnon modes resolved at the minimum gap in scans
such as in Fig. 2(c). (b) Amplitude of perpendicular ordered
moment Sc in the cone phase vs field. Solid line is a power-law
fit. (c) Incommensuration (e � Q-0.5) vs field (solid line is a
guide to the eye). Inset: magnetization vs field [8] (T � 30 mK)
compared with a linear behavior (solid line). (d) Superposition
of contrarotating magnons v

2
2Q and v

2
1Q [7] of different am-

plitudes (large and small circle) gives the elliptical order in bc
plane shown schematically for odd layers in (e) (arrows are or-
dered spins). Even layers have an opposite sense of rotation.

as illustrated in Fig. 3(e). In fact this order corresponds
exactly to the simultaneous condensation of contrarotating
magnons v

2
2Q and v

2
1Q [see Fig. 3(d)] with gap closure at

BC; a mean-field calculation [6,7] of this state gives an el-
liptical cone with asymmetry �cosuQ 1 sinuQ���cosuQ 2

sinuQ� � 1.52�6� in agreement with the observed ratio
Sb�Sc � 1.55�10� just below BC . The asymmetry is a
combined effect of interlayer coupling J 00 and alternation
of D6 between layers and rapidly decreases as the field
is lowered due to increased interparticle interactions and
fluctuations, Sb�Sc � 1.1�1� below 7 T.

The effect of fluctuations and interactions on the or-
der as field decreases is quantified in Figs. 3(b)–3(c):
Figure 3(b) shows the off-diagonal order parameter Sc.
137203-4
Close to BC it is described by a power law (solid line)
Sc � jBC 2 Bjb with b � 0.33�3�, significantly below
the value b � 0.5 expected for mean-field (3D) BEC [5].
The magnetization Sa obtained from susceptibility mea-
surements [8] is plotted in the inset of Fig. 3(c). It shows
that the boson density is not linear versus jBC 2 Bj but
rather shows a deviation that may be logarithmic [9]; and
finally the wave vector of the condensate Q � 0.5 1 e�B�
is plotted in Fig. 3(c). Q varies strongly with field indicat-
ing that magnon-magnon interactions are important even at
low density and renormalize the condensate wave vector.
The above features deviate significantly from mean-field
(3D) behavior [10] and could be associated with the 2D
nature of the magnons. In two dimensions interactions can
qualitatively change the scaling behavior such as by in-
troducing nonlinear, log corrections to the magnetization
curve [9].

In summary, we have determined the Hamiltonian of
the quasi-2D quantum magnet Cs2CuCl4 using a new
experimental method and show that it is a 2D anisotropic
triangular system. We also measured transverse (off-
diagonal) order with field below saturation, an example of
Bose-Einstein condensation of magnons. Our methods are
general and could be used to reveal exchanges and quan-
tum renormalizations for systems as diverse as random
magnets, quantum antiferromagnets, and spin glasses.
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