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We report on the thermopower of an Aharonov-Bohm (AB) interferometer with a quantum dot in the
Kondo regime. The thermopower is anomalously enhanced due to the Kondo effect as in heavy fermion
systems. In contrast to bulk systems, the sign of the thermopower can be changed by adjusting the energy
level scheme or the particle-hole asymmetry of a dot with the gate voltage. Further the magnitude and
even the sign of the thermopower in the AB ring can be changed at will with varying either magnetic
fields or the gate voltages.
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Observations [1–3] of the Kondo effect [4] in quan-
tum dots have opened a testing ground of the quantum
effects of electron wave functions and many-body effects.
In contrast to bulk systems where the phase is washed out
by several scattering processes, the phase coherence of an
electron’s wave functions can be preserved in nanoscopic
systems. A typical system to measure the phase coherence
is the Aharonov-Bohm (AB) interferometer. Recently a
phase-sensitive Fano resonance was observed [5] in the
differential conductance for a quantum dot system which
contains both a resonant current path and a direct one.

An asymmetrical differential conductance suggests that
the thermopower may be the right experimental tool for the
study of the phase-sensitive Aharonov-Bohm interferome-
ter. There are, indeed, some studies of thermopower in
AB ring geometries [6,7] for noninteracting electrons. The
thermopower of electrons is sensitive to the particle-hole
asymmetry in the density of states (DOS) and the en-
ergy dependence of the electron scattering rate. In heavy
fermion systems (HFS), the enhanced thermopower and
its sign are determined by the energy dependence of the
Kondo resonance scattering rate of the conduction elec-
trons off the magnetic ions [8,9]. In mesoscopic systems,
the thermopower will probe sensitively the asymmetrical
shape of the transmission probability.

In this paper, we study theoretically the thermopower
of quantum dot systems in the Kondo regime. The ther-
mopower of a quantum dot is anomalously enhanced due
to the Kondo effect as in the HFS. In contrast to the HFS,
the energy level scheme or the particle-hole asymmetry of
a dot can be modulated continuously by the gate voltage
capacitatively coupled to the dot, and the sign of the ther-
mopower can be changed from negative to positive. When
a quantum dot is inserted in the AB ring (see Fig. 1), the
Fano interference [10] leads to a more dramatic change in
thermopower. Because of the Kondo effect of a quantum
dot, a new Kondo-resonant current path opens below the
Kondo temperature and interferes with the direct tunnel-
ing path leading to the Fano interference in the transmis-
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sion probability. Adjusting both the AB phase by varying
the magnetic field and the tunneling matrices by changing
the gate voltages, the transmission spectral function can be
controlled to take several different shapes. In addition to
the differential conductance, the thermopower can probe
the shape of the transmission probability since the ther-
mopower is sensitive to the particle-hole asymmetry in the
transmission probability. Combining the Kondo effect and
the Fano interference leads to an enhanced thermopower
of the order of kB�e. The magnitude and even the sign of
the thermopower can be controlled with varying the AB
phase.

We may describe the quantum dot using the Anderson
impurity model, Hd � ed
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the number of electrons �N� in a quantum dot is odd and
the spin of the highest-lying electron is unpaired. Here
ed is the energy level of the highest-lying electron with
unpaired spin in a quantum dot and U is the Coulomb
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FIG. 1. Schematic display of Aharonov-Bohm (AB) interfer-
ometer with an embedded quantum dot. The magnetic AB
phase f � 2pF 3 e�hc is included in the tunneling matri-
ces as VdLTLRVRd � jVdLTLRVRd jeif . F is the magnetic flux
threading through the AB ring.
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f � 2pF�F0 is contained implicitly in the tunneling ma-
trices in a manner that VdLTLRVRd � jVdLTLRVRdjeif. F

is the magnetic flux passing through the system as shown in
Fig. 1 and F0 � hc�e is the flux quantum. Recently, this
model system with one conduction channel was studied
for the conductance using the equation of motion method
[11] and the numerical renormalization group in equilib-
rium [12].

The electric and heat current operators can be de-
fined as a change in the number of electrons and the
total energy per unit time in the left electrode, ÎL �
e�NL, H��ih̄ and Q̂L � 2�HL, H��ih̄, respectively. Here
NL �

P
�ka c

y

L�ka
cL�ka is the number operator and HL is the

Hamiltonian of the left lead. We use the Keldysh Green’s
function method [13,14] to write the electric and heat cur-
rents. Summing over all the multiple tunnelings between
two leads and using current conservation in a steady state,
the electric and heat currents can be expressed in terms of
the Green’s function of a dot [6,7].µ
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T�v� � fL�v� 2 fR�v�� .

(1)

The numerical factor of 2 accounts for the two spin direc-
tions and fp�v� � f�v 2 mp� is the Fermi-Dirac thermal
distribution function of p � L, R lead with mp � 2eVp .
The transmission spectral function T �v� is given by the
following expression in the wide conduction band limit:

T�v� � T0 1 2G

q
gT0�1 2 T0� cosf ReGr

d

1 G�T0 2 g�1 2 T0 cos2f�� ImGr
d . (2)

Here Gr
d is the retarded Green’s function of a quantum dot

and G � �GL 1 GR���1 1 g� is the Anderson hybridiza-
tion. Gp � pNpjVdp j

2 measures the hopping rate of elec-
trons between the quantum dot and the leads, where Np

is the density of states of lead p � L, R. T0 � 4g��1 1

g�2 is the transmission probability due to the direct tun-
neling, and g � p2NLNR jTLRj

2 is the dimensionless mea-
sure of direct tunneling of electrons between the two leads.
g � 4GLGR��GL 1 GR�2 is the maximum dimensionless
linear conductance through a quantum dot in the absence
of the direct tunneling and also measures asymmetry in the
coupling of a quantum dot to the left and right reservoirs.
The interference effect is included in the second and third
terms of T�v�. The above expression for T �v� agrees with
Eq. (2) in Ref. [12].

We compute the dot’s Green’s function Gd using the
noncrossing approximation (NCA) for the infinite U An-
derson model in the Kondo regime. The NCA [15–19]
has been successfully used for the study of the Anderson
model except for the nonanalytic behavior [20] at a tem-
perature far below the Kondo temperature TK [21]. In the
NCA self-energy equations, the renormalized Anderson
hybridization should be used instead of the bare Anderson
hybridization [22]. The multiple tunnelings between the
136601-2
two leads result in the flux-dependent renormalized Ander-
son hybridizations which in a wide conduction band limit
are given by the equations,

GL,R �
1

�1 1 g�2 �GL,R 1 gGR,L 7 2
q

gGLGR sinf� .

(3)

In equilibrium, the two thermal functions are equivalent
or fL � fR so that the total Anderson hybridization
G � GL 1 GR is independent of the AB phase f

and so is Gr
d. T�v� also remains invariant under the

inversion of the magnetic flux: F ! 2F. The On-
sager relation T�v, 2f� � T�v, f� in equilibrium
becomes broken when a finite source-drain bias voltage
is applied � fL fi fR�. The Kondo temperature TK is
independent of f and can be estimated in the U ! `

limit by the equation TK � D
p

N �0�J exp�21�N�0�J�
with N�0�J � G�pjed j. Note that the direct tunneling
suppresses the Kondo effect.

At high temperature above TK , the current flow through
a quantum dot is blocked due to the strong Coulomb re-
pulsion (Coulomb blockade). Electrons flow from the left
reservoir to the right one only via the direct tunneling.
With decreasing temperature below TK , the Kondo reso-
nance peak at the quantum dot develops close to the Fermi
level. The newly opened current path interferes with the
direct tunneling path. This Fano interference transforms
T�v� into various different shapes depending on the AB
phase f. The general structure of T �v� near v � 0 can
be read off from Eq. (2). It is well known that 2ImGr

d
develops the Kondo resonance peak with its width of the
order of TK near v � 0 while ReGr

d varies very rapidly
over the energy scale of TK near v � 0 with a dip just
below v � 0 and a peak above v � 0 [22]. The overall
shape of the transmission spectral function T�v� is deter-
mined by the value of the AB phase f and the sign of Dc

[see Eq. (2)],

Dc � T0 2 g�1 2 T0 cos2f� . (4)

A typical Fano interference pattern consisting of a dip and
peak structure is expected when cosf fi 0. At cosf � 0,
T�v� has a dip (peak) resonance structure if Dc . �,� 0,
respectively.

In our numerical NCA work we consider a symmetri-
cally coupled dot (g � 1 or GL � GR) with the energy
level scheme (ELS): the N 2 1 state lies lower in energy
than the N 1 1 state, EN21 ø EN11, where N is the num-
ber of electrons in a dot. Other ELS’s will be discussed
later. In the Anderson model picture, EN21 � 0 (empty),
EN � ed (singly occupied), and EN11 � 2ed 1 U (dou-
bly occupied). In practice, we take the limit of U ! `
[23], and the DOS of two leads is assumed to be Lorentzian
of bandwidth D.

For the weak direct tunneling, the Fano interference re-
mains weak and the Kondo-related peak persists in T �v�
over all f [22]. The AB phase f dependence of T �v� be-
comes stronger with increasing direct tunneling amplitude
136601-2
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FIG. 2. Dependence of the transmission probability T �v� near
the Fermi level on temperature T , the AB phase f. The model
parameters are chosen as T0 � 0.5, ed�D � 20.5, and GL �
GR � 0.07D. With lowering T , the Kondo correlation sharpens
the shape of T �v�. T is varied as T�TK � 100, 20, 4, 0.8, 0.16,
3.2 3 1022, 6.3 3 1023 , 1.3 3 1023. The last four temperature
curves cannot be distinguished with the naked eye. The AB
phase f � 0± (a), 90± (b), and 180± (c). Fano interference
between the direct path and the Kondo-resonant tunneling leads
to the strong dependence of T �v� near the Fermi level on the
AB phase.

T0. The case of T0 � 0.5 is displayed in Fig. 2 and the
shape of T �v� near v � 0 is strongly sensitive to the AB
phase f. Since Dc � 0 at f � 0± and 180±, T �v� has the
dip-and-peak structure of ReGr

d [see Figs. 2(a) and 2(c)].
When cosf � 0 �f � 90±, 270±�, the spectral shape of

T�v� is wholly determined by both ImGr
d and the sign

of Dc. Dc remains always negative for g � 1 so that
the Kondo resonance peak persists in T �v� for the whole
range of T0 �0 # T0 # 1�. The Fermi-liquid relation [24],
ImGr

d�0� � 21�G at T � 0 K, leads to one exact rela-
tion: T�0� � g for any interacting dots. T�v� reaches its
maximum possible value g � 1 at v � 0, a unitary Kondo
resonance tunneling. When the background direct tunnel-
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ing amplitude T0 is increased from 0 to 1, jDcj approaches
zero and the Kondo-related peak becomes smaller [22].

Except for close to f � 90±, T�v� of asymmetrically
coupled dots �g , 1� is not much different from the sym-
metrically coupled dots [22]. Since Dc � T0 2 g at f �
90± can change its sign, the Kondo-related peak in T �v�
transforms into a dip at v � 0 as the value of T0 crosses
g. T �v� is flat near the Fermi level when T0 � g [22].

The thermopower of a quantum dot in a two-terminal
configuration can be found in an open circuit �I � 0� by
measuring the induced voltage drop across a quantum dot
when a temperature difference between the two leads is
applied. The thermopower S is defined by the relation,

S � 2 lim
TL!TR

VL 2 VR

TL 2 TR

Ç
I�0

. (5)

Expanding the expressions for I and Q in Eq. (1) up to
the linear terms of dV � VL 2 VR and dT � TL 2 TR ,
the transport coefficients can be expressed in terms of the
integral, In�T� � �2�h�

R
dv vnT�v� �2≠f�≠v�. I �

L11dV 1 L12dT and Q � L21dV 1 L22dT where
L11 � e2I0�T �, L21 � L12T � 2eI1�T�, and L22 �
I2�T��T .

The thermopower S � 2I1�eTI0 probes the particle-
hole asymmetrical part of T�v�. To begin we compute
the thermopower in the absence of direct tunneling or
T0 � 0. In our choice of the ELS in a dot, EN21 ø EN11,
the Kondo resonance peak has more spectral weight on
the electron excitations. Since the electron excitations
are the main carriers of charge and heat, the sign of the
thermopower is negative. From the study of the HFS, it
is well known that the thermopower is anomalously en-
hanced due to the Kondo effect and is of the order of kB�e
��86.17 mV�K� near T � TK [8,9]. In normal metals,
the thermopower is of order mV�K. The thermopower is
also enhanced in a quantum dot in the Kondo regime, as
shown in Fig. 3 by the solid line.

To study the effect of the Fano interference on S,
we now turn on the direct tunneling. The computed
thermopower S�T� for T0 � 0.5 is displayed in Fig. 3 for
different AB phase f. When f � 0±, the electron
transmission is high while the hole transmission is low
[Fig. 2(a)]. Since electron excitations are the main carriers
of charge and heat, the thermopower is negative and its
magnitude is of the order of kB�e near T � TK due to
the Kondo effect. With increasing AB phase, the dip-peak
structure in T�v� transforms into a Kondo-related peak at
f � 90± [Fig. 2(b)]. In this case, T�v� is more or less
symmetrical with respect to v � 0 though more spectral
weight lies on the electron excitations. S is therefore
weakly negative over a large temperature range. When
f � 180±, the hole (electron) transmission is high (low)
[Fig. 2(c)]. Since the holes are the main carriers, the
thermopower is positive. In summary, when the quantum
dot is inserted in the AB interferometer, the magnitude
and the sign of S can be changed by varying the AB phase
f or magnetic fields threading the AB ring.
136601-3
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FIG. 3. Thermopower S. The solid line is the thermopower
when the direct tunneling is absent or T0 � 0. Because of the
Kondo effect, S is enhanced near the Kondo temperature and
negative in the energy level scheme EN21 ø EN11. The five
broken lines show the dependence of S on the AB phase f.
Because of Fano interference, the magnitude and sign of S are
modulated by the magnetic AB flux.

We now address the effect of the ELS in a quantum dot
on the thermopower when T0 � 0. The sign and the mag-
nitude of the thermopower can be controlled by adjusting
the ELS in a dot, too. The results in Fig. 3 are computed
for the dot with EN21 ø EN11 �U ! `�. In analogy to
the HFS, this ELS is equivalent to the Ce alloys where
the doubly occupied f-electron orbitals lie well above the
empty f-electron orbital state. Adjusting the gate voltage
capacitatively coupled to the dot, the ELS of a dot can be
changed in a continuous manner. When EN21 . EN11,
more spectral weight of the Kondo resonance peak lies on
the hole excitations. The main carriers are hole excitations,
leading to a positive thermopower. This inverted ELS is a
particle-hole symmetric image of an ELS EN21 , EN11
with respect to the point EN21 � EN11 and corresponds
to the Yb alloys in HFS. Since the flow of electrons is
Kondo-assisted in a quantum dot, the sign of S is nega-
tive (positive) when EN21 , �.� EN11, respectively. In
the Ce or Yb HFS, electrons are Kondo scattered so that
the sign of S is positive (negative) for the Ce (Yb) alloys,
respectively. Note that the sign of the thermopower is op-
posite in a quantum dot and the bulk HFS with the same en-
ergy level scheme. When the ELS in a dot is particle-hole
symmetric �EN21 � EN11�, the Kondo resonance peak of
the dot is also symmetric with respect to the Fermi level.
Since the heat currents carried by electrons and holes are
canceled by each other, the resulting thermopower is zero.
The linear conductance measures the symmetrical part of
T�v� near jvj , kBT , and its value is not sensitive to
the shape of T�v�. On the other hand, the sign of the
thermopower is sensitive to the degree of the particle-hole
asymmetry in T�v�. Hence the sign of S can probe the
energy level scheme in a quantum dot.
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In summary, we studied the thermopower in a quantum
dot in the Kondo regime. In contrast to the bulk heavy
fermion systems, the sign of the thermopower in a quantum
dot can be changed by adjusting the energy level scheme
or the particle-hole asymmetry in a dot. When the dot is
inserted in an AB interferometer, the dramatic variations
in the shape of the transmission spectral function T �v�
are possible by controlling the AB phase and the tunneling
matrices. The rich asymmetrical shapes of T �v� mani-
fest themselves in the magnitude and the sign of the ther-
mopower. Combination of the Kondo effect and the Fano
interference enables us to control the magnitude and the
sign of thermopower.
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[11] B. R. Bulka and P. Stefański, Phys. Rev. Lett. 86, 5128

(2001).
[12] W. Hofstetter et al., Phys. Rev. Lett. 87, 156803 (2001).
[13] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov.

Phys. JETP 20, 1018 (1965)].
[14] D. C. Langreth, in Linear and Nonlinear Electron Trans-

port in Solids, edited by J. T. Devreese and V. E. van Doren,
NATO Advanced Study Institute, Ser. B, Vol. 17 (Plenum,
New York, 1976), p. 3.

[15] N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987).
[16] T.-S. Kim and D. L. Cox, Phys. Rev. B 55, 12 594 (1997).
[17] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett.

70, 2601 (1993); N. S. Wingreen and Y. Meir, Phys. Rev.
B 49, 11 040 (1994).

[18] M. H. Hettler, J. Kroha, and S. Hershfield, Phys. Rev. Lett.
73, 1967 (1994).

[19] T.-S. Kim and S. Hershfield, Phys. Rev. B 63, 245326
(2001).

[20] E. Müller-Hartmann, Z. Phys. B 57, 281 (1984).
[21] In our work, the temperature below which the nonanaly-

ticity shows up is estimated to be less than 1024TK .
[22] T.-S. Kim and S. Hershfield (unpublished).
[23] Inclusion of the EN11 state needs the vertex correction to

get the right Kondo energy scale. See Th. Pruschke and
N. Grewe, Z. Phys. B 74, 439 (1989).

[24] D. C. Langreth, Phys. Rev. 150, 516 (1966).
136601-4


