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Convective and Absolute Eckhaus Instability Leading to Modulated Waves in a Finite Box
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We report an experimental study of the secondary modulational instability of a one-dimensional non-
linear traveling wave in a long bounded channel. Two qualitatively different instability regimes involving
fronts of spatiotemporal defects are linked to the convective and absolute nature of the instability. Both
transitions appear to be subcritical. The spatiotemporal defects control the global mode structure.
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The Eckhaus instability [1] is one of the major sec-
ondary instabilities of nonlinear patterns. While the Eck-
haus dynamics for steady patterns (e.g., Rayleigh-Bénard)
is fast, dealing with local wavelength nucleation or annihi-
lation [2], it presents slow evolution of traveling modulated
waves in the traveling-wave-pattern case. Such modulated
patterns are believed to be essential for the description
of the transition to phase and defect chaos in complex
Ginzburg-Landau models [3]. Experiments on nonlinear
traveling waves are frequently carried out in annular cells
[4–8] for the simplicity of the underlying wave pattern
and generally consider the Eckhaus instability close to the
wave threshold. The main specificity of our wave system
is to become Eckhaus unstable for an increasing value of
the control parameter, i.e., as a first step on the route to
spatiotemporal chaos [8]. In this Letter, we focus on new
results in a long rectangular cell: a homogeneous traveling
wave undergoing the Eckhaus instability generates modu-
lated waves. Our results reveal the rich effect of a finite
group velocity within a closed cell: we describe quantita-
tively the convective and absolute modulated wave patterns
and the associated transitions.

Setup.—Our physical results concern the secondary bi-
furcation of a wave pattern. We treat this system as a
nonlinear wave model: this approach does not require any
connection with the underlying physics of the convective
flow. The experimental setup, its basic flow, and the nature
of the primary bifurcation producing the underlying wave
pattern have been described in detail [9]. It consists of a
thermocapillary convective flow in a long narrow channel
where an external parameter —the horizontal temperature
difference DT—drives an instability toward propagating
hydrothermal waves [9–11]. The length of the channel is
L � 180 mm. It is occasionally compared to an equiva-
lent annular channel [8] of perimeter P � 503 mm, i.e.,
a periodic boundary condition system. The aspect ratios
ensure one-dimensional patterns.

We have shown [9] this primary bifurcation to be
well described by the convective/absolute transition: a
global mode is the first structure observed when the
control parameter DT is increased above the absolute
threshold DTa � 3.66 K. In the periodic channel, waves
appear at the convective threshold DTc � 3.1 K which
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can be used to build a dimensionless control parameter
e � DT�DTc 2 1. Above complex competition regimes
between right- and left-traveling waves (e.g., blinking
states), we have shown a single wave train to become
almost uniform in the cell for DT * 4.5 K (Fig. 1). This
state constitutes the basic state for the present study: we
now focus on the secondary instability of this single wave
train.

When DT is increased far enough from the primary
onset, a modulational instability occurs. As the group
velocity is finite, the modulational perturbations are
advected. The present Letter focuses on the distinction
between the convective and the absolute modulational
instability regimes and the relevance of a new object: a
front of dislocations or modulations. In periodic condi-
tions, this modulational instability occurs at the lowest
possible wave number Kmod � 2p�P [8]: it is strictly
an Eckhaus [1] instability. In the linear channel, for
simplicity, we also refer to Eckhaus instability, although
the wave number of the modulational instability modes
are somehow larger: typically Kmod � 4�2p�L�.

Absolute instability.—Figures 2 and 3 present the three
states which support our discussion. For DT . DTm,a �
�5.56 6 0.03� K, the observed pattern (Fig. 2b) can be de-
scribed as a wave composed of two wave trains of mean
wave numbers ku and kd . The wave number, frequency,
and amplitude of both wave trains are modulated in space
and time. The wave number Kmod of the modulation is of
order of jku 2 kdj. Waves are emitted from one end of
the cell with wave number ku � 21�2p�L� and propagate
along the cell at the phase velocity. The phase modula-
tion of this wave train, traveling at the group velocity, is
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FIG. 1. The measured (thin line) and schematic (thick line)
amplitude profiles of the single-wave system for DT � 4.75 K.
The pattern is presented as the envelope amplitude A�x� of a
right-traveling wave, although both directions are equivalent.
The amplitude B�x� of the minor (left) wave is negligible. For
details, see Fig. 2 in Ref. [9].
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FIG. 2. Spatiotemporal diagrams of the local and instanta-
neous wave number k�x, t� of the wave: temporally stabilized
regimes for (a) DT � 5.54 K and (b) 5.65 K. The waves propa-
gate from left to right. The mean wave number can be visually
estimated by the mean gray level and is labeled (units 2p�L) in
the upstream (ku) and downstream (kd) regions. A uniform wave
number (a) represents a nonbifurcated state and illustrates both
stable and convective regimes below DTm,a. The modulated state
(b) is the global mode of the Eckhaus instability. Each black
to white transition of the wave-number value at xF�L � 0.32
is due to a phase jump in the core of a defect. The defect front
is stable with time. (c) By Hilbert demodulation of the phase-
gradient image (b), we get the spatial profile of the amplitude
Amod of the modulation.

spatially growing. In Fig. 2c, we clearly see the exponen-
tial growth of the local-wave-number modulation ampli-
tude Amod along x. At a fixed, finite distance xF from the
source boundary, the wave-number modulation is so large
that it allows the wave number to change from ku to kd

by time-periodic phase slips. For x . xF , the mean wave
number is kd � 17�2p�L�. In this second region, the mod-
ulation is damped (Figs. 2b and 2c): we conclude that ku

(respectively, kd) waves are unstable (respectively, stable)
with respect to modulations.

We call dislocation front the set of spatiotempo-
ral loci where spatiotemporal dislocations occur. For
DT . DTm,a, the position xF of this object is stationary;
Fig. 4 shows the relation between the control parameter
and the front position which remains located in the
first half of the cell whatever the value of DT . Steady
dislocation fronts have been observed for traveling waves
in a Taylor-Dean experiment [12]. In general, hysteresis
has not been investigated [13]. From the modulation
amplitude profiles Amod�x� (Fig. 2c), we also extract the
spatial growth rate of the modulations: it is finite and
positive (squares in Fig. 5a).

We claim that those stationary states are the global
modes for the modulational (Eckhaus) instability. The
134501-2
FIG. 3. Transient leading to the state of Fig. 2a. The state has
been prepared at t � 0: a dislocation front is slowly advected
out of the cell. The modulations grow along x but vanish along
t: this is the signature of a convective instability regime. The
arrow indicates the asymptotic front velocity.

structure of these global modes is very peculiar: noth-
ing seems to saturate the modulations except the breakup
of the underlying wave pattern, i.e., the abrupt change
of the mean-wave-number downstream from the disloca-
tions. Similar patterns have been numerically observed in
semi-infinite [14] and closed cells [15]. As Couairon and
Chomaz [14], we observe the nonlinear global threshold
and the absolute instability threshold to be identical.

Convective instability.—For DT , DTm,a, dislocation
fronts are not observed on asymptotic states. The asymp-
totic regime (Fig. 2a) is a homogeneous wave of uniform
wave number ku � 21�2p�L�. However, transients ob-
tained after control parameter changes show traveling dis-
location fronts slowly advected out of the channel (Fig. 3):
those states are convectively unstable states with respect

FIG. 4. Spatial position xF of the dislocation front for abso-
lutely unstable states vs DT . Stable and convectively unstable
states without permanent dislocation front are represented by a
symbol at xF � L.
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FIG. 5. (a) Evolution of the spatial growth rate of the modu-
lation with the control parameter for transient �±� or steady ���
spontaneously modulated wave patters. Linear fits of the three
regimes— stable, convective, and absolute—are presented.
They intersect at �DTm,c� and DTm,a . These data concern the
modulations of the upstream region of the cell whose mean
wave number is ku � 21�2p�L�. Corresponding data for the
downstream region are negative while DT & 8 K. (b) Idem
for perturbation initiated wave packets in the stable �1� and
convectively unstable �±� regimes. The solid lines reproduce the
fits of (a) to allow quantitative comparisons: the same growth
rate is selected in both cases for the convective regime.

to the modulational (Eckhaus) instability. They are ob-
served in the small gap between DTm,c � 5.45 K and
DTm,a � 5.56 K.

For DT , DTm,c, asymptotic states are uniform and dis-
location fronts do not exist. Close to DTm,c very long
transients are often observed. These transient patterns (not
shown) are also slightly modulated; the modulations do
not reach the critical amplitude producing dislocations; the
modulation amplitude profiles generally decrease (nega-
tive spatial growth rate) along the downstream direction
and slowly travel toward the upstream direction. So, the
uniform wave looks stable. The transients may last much
longer than the experimental running time; those results
have to be considered with care.

Using a second Hilbert transform of phase-gradient data
(as in Fig. 2c), we measured spatial and temporal growth
rates of the modulation. We present these data for the
unstable upstream wave train. The temporal growth rate
for modulations in the laboratory frame is negative be-
low DTm,a and positive above. It is also close to zero
around the convective transition where very long transients
are observed. The spatial growth rate of the upstream ku

wave train for all three regimes is presented in Fig. 5a. It
is positive for both unstable regimes, but the slope is seem-
ingly different in the convective and absolute cases. It is
negative below DTm,c.
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Perturbed states.— In order to test the above description,
we perturbed the uniform states either by plunging a thin
needle in the convective layer or by dropping a cold or hot
droplet of fluid. The frequency content of those perturba-
tions differs from the above reported transients: the modu-
lation wave trains contain only a few wavelengths and
appear to be advected downstream at roughly the group
velocity. All observed perturbations show a positive spa-
tial growth rate and a negative temporal growth rate in the
laboratory frame. The spatial growth rates are presented
in Fig. 5b. In the convective regime, the growth rate ap-
pears to be selected at the same value as in spontaneous
transients. In the stable regime, however, the data are very
dispersed but remain positive.

Discussion.—Let us start our discussion by two impor-
tant remarks:

(i) The modulation amplitude Amod never saturates: All
observed Amod profiles appear locally exponential along
x. No nonlinear saturation effect is thus observed. The
occurrence of dislocations (for Amod � jku 2 kdj) is the
only limit to exponential growth. This is a strong argu-
ment for the Eckhaus instability to behave subcritically in
this closed cell. Remember it is supercritical in the an-
nular cell [8]. This difference is due to the mean wave
number of the carrier-wave pattern. It will be discussed
elsewhere.

(ii) Reflections: The modulation wave system is a per-
fect single wave system: the reflections of the modulations
at the boundaries are irrelevant since there is no possibility
for reflected information to travel back to the source.

The observation facts described above are coherent with
the interpretation in terms of convective and absolute in-
stability. The striking point is the positive spatial growth
rates for perturbations in the seemingly stable regime be-
low DTm,c. As for spontaneously modulated patterns, we
would expect those modulation wave packets to decrease
in space exactly as the stable kd wave trains do in the ab-
solute regime (Fig. 2c).

Suppose that the convective instability is subcritical as
suggested in remark (i). Then, above DTm,c, the tran-
sient evolves on an unstable branch (Fig. 3) close to the
absolute branch (Fig. 2b). However, below DTm,c, a sec-
ond unstable branch coexists, which can be reached only
by perturbing the flow: this description can be supported
by the schematic Fig. 6 inspired by zero group velocity
instabilities. These branches present very different pat-
terns: The upper branch exhibits extended modulations
over the whole cell, with slow evolution and, for high
enough amplitudes — the generally observed case above
DTm,c—dislocation fronts. The lower branch exhibits
fast-traveling narrow modulation wave trains and cannot
be reached spontaneously by varying DT . This hypothesis
can explain the very different aspect of spontaneous and
induced transients in the stable regime below DTm,c. It is
also known that the shape of induced nonlinear patterns
below subcritical instabilities depends on the forcing am-
plitude [16], so the dispersion in Fig. 5b may be due to
134501-3
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FIG. 6. Schematic representation of the observed regimes,
based on the usual representation of a subcritical bifurcation
with zero group velocity. The ordinate is only qualitative. Solid
heavy lines represent the steady states, bifurcated or not, above
or below DTm,a � 5.56 K. The thin dashed lines may account
for two different transient modes (see text).

both the effect of amplitude and the presence of the two
branches.

Another observation of the convective branch is intrigu-
ing. We record the asymptotic velocity of the disloca-
tion fronts between DTm,c and DTm,a, i.e., the tangent
to the space-time trajectory when the front leaves the cell
(Fig. 7). The observation is surprising: the closer we are
to the absolute instability onset, the faster the front moves.
Then its velocity jumps below zero above DTm,a. A con-
trario, around DTm,c, the front velocity is zero, leading to
infinitely long transients, i.e., temporal marginality. This
quantifies the experimental complexity of carrying out the
experiment around this point. What is the meaning of the
velocity jump at DTm,a? Is the convective/absolute tran-
sition also subcritical? It is probably: while our protocol
[13] did not allow us to explore all branches by varying
DT up and down from one state to another, a test has been
made to transit directly from an absolute state to a stable
state just below DTm,c: the absolute modulation profile re-
mains fixed in the cell. This can be due either to hysteresis
or to the vanishing front velocity. . . which makes the sys-
tem marginal in this region. This point would need to be
addressed with an improved experimental device.

Finally, in some regimes to be presented elsewhere [17],
the front position xF�t� exhibits chaotic behaviors (period

FIG. 7. Front velocity around the convective/absolute transi-
tion. The circles �±� show the velocity of dislocation fronts in
transient convective regimes below DTm,a . Above DTm,a , the
(negative) velocities of transient modulation fronts invading the
cell from downstream are shown by squares ���. For compari-
son, the group velocity at wave onset is 0.90 mm s21.
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doubling or quasiperiodicity): it can thus be viewed as the
order parameter for the modulational instability up to the
transition to spatiotemporal chaos.

To conclude, we claim to have observed both convec-
tive and absolute transitions for a modulational or Eck-
haus instability in a long bounded channel. The subcritical
convective transition is characterized by the zero spatial
growth rate and zero advection velocity for the modulated
wave pattern, which can be viewed as spatial and tempo-
ral marginality. The absolute transition is characterized by
the dynamics of dislocation fronts. The front velocity data
suggest the transition to be subcritical as well. This issue
deserves theoretical support which remains, to our knowl-
edge, unexplored.
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