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Semileptonic b ! u Decays: Lepton Invariant Mass Spectrum
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We compute O �a2
s � QCD corrections to the lepton invariant mass spectrum in the decay b ! ulnl ,

relevant for the determination of the Cabibbo-Kobayashi-Maskawa matrix element jVubj. Our method
can also be used to evaluate moments of the lepton energy distribution with an O �a2

s � accuracy. The
Abelian part of our result gives the neutrino invariant mass spectrum in the muon decay and, upon
integration, the O �a2� correction to the muon lifetime.
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Determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements from precision studies in B
physics is one of the main goals of experiments BaBar
and Belle, under way at SLAC and KEK. These studies
are expected to provide important insights into flavor
physics, in particular to shed light on the origin of the CP
violation and, possibly, discover “new physics.”

The two CKM parameters directly accessible at B facto-
ries, jVcb j and jVub j, strongly differ in magnitude, with the
former being about 10 times larger than the latter. An ac-
curate determination of jVcbj is much easier since the rele-
vant decay rates are relatively large and the backgrounds
are small. For jVub j, the theoretically favorable methods
are not feasible experimentally, whereas interpretation of
clean experimental signatures suffers from large theoreti-
cal uncertainties.

Extraction of jVubj from inclusive semileptonic decays
of B mesons requires a suppression of the much larger
contribution of b ! c transitions. In order to do so one has
to impose cuts on various observables, and several options
have been discussed in the literature. For example, one
can select events with large energy of the charged lepton,
which can be produced only in b ! u decays, or require
that the hadron invariant mass be smaller than the lightest
charmed meson D.

Unfortunately, such cuts are so severe that the rate of
the remaining events cannot be predicted using the heavy
quark expansion. For example, imposing the cut on the
electron energy induces a sensitivity of the decay rate to the
B-meson light-cone wave function which is not very well
known. It can in principle be extracted from measurements
of the photon energy spectrum in b ! sg. However, the
relevant theoretical analysis has been performed only in
the limit of an infinite b quark mass and the potentially
sizable LQCD�mb corrections are not under control. It
is desirable, therefore, to have an alternative combination
of cuts which can remove the charm background, keep
a significant fraction of b ! u events, and preserve the
applicability of the standard heavy quark expansion.
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Recently, a method fulfilling these requirements has
been proposed by Bauer, Ligeti, and Luke [1,2]. Their idea
consists in extracting jVubj from inclusive semileptonic de-
cays b ! ulnl by applying a cut on the invariant mass of
the leptons q2. To eliminate the charm background, one
requires q2 . q2

0 � �mB 2 mD�2 � 11.6 GeV2. It turns
out that this cut is mild enough to keep a significant frac-
tion of b ! u transitions. In addition, q2

0 is sufficiently
smaller than m2

b for the process to be considered inclusive.
Therefore, the heavy quark expansion in 1�mb can be ap-
plied with confidence.

Of course, there are several sources of theoretical uncer-
tainties associated with this method, including in roughly
equal measure the value of the b quark mass, the non-
perturbative power corrections (of third order in the ratio
of LQCD and the characteristic momentum flow), and the
two-loop perturbative QCD corrections [3]. The calcula-
tion of this last effect is the main purpose of this Letter.

The difficulty connected with such corrections is that
they involve the q2 distribution, rather than the total decay
rate. While two-loop corrections to charged particle decays
are in general challenging (the first calculations for specific
kinematic configurations or the total decay rates have been
completed only recently; see, e.g., [4–7]), two-loop cor-
rections to the decay distributions have not been evaluated
so far.

In the present calculation we take advantage of the fact
that, for the experimentally interesting case, the invariant
mass of the leptons is large. We introduce an expansion
parameter d � �m2

b 2 q2��m2
b . In b ! u studies using

cuts proposed in [1,2] the maximal value of d is about 0.5
for q2 � q2

0. Obviously, increasing q2 results in a rapid
decrease of d, so that d can be considered as a small
parameter in the region of interest q2 . q2

0. Therefore,
by constructing an algorithm for expanding the relevant
Feynman diagrams around d � 0 and computing several
terms of such an expansion, we can derive the O �a2

s �
correction to the dilepton invariant mass spectrum valid
in the region of experimental interest.
© 2002 The American Physical Society 131801-1
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Examples of diagrams we have to consider in study-
ing the semileptonic b ! u decay at O �a2

s � are shown in
Fig. 1. The optical theorem connects the imaginary part
of such diagrams with contributions to the decay rate. We
first integrate over the lepton and neutrino phase space,
thereby reducing the problem to the decay b ! W��q2�u,
where W� is a virtual W boson with an invariant mass q2.
In the limit d ! 0, q2 approaches m2

b. Therefore, due
to phase space constraints, W� becomes static. The expan-
sion in d is constructed by applying the heavy quark/boson
expansion to the Feynman diagrams. The only unusual fea-
ture in our case is that the initial b quark is on the mass
shell. In the heavy quark effective theory (HQET) limit,
this leads to propagators of the type 1��2pk�, whereas the
W� boson is off-shell so that its propagator has the form
1��2pk 1 d�.

Since we are interested in the O �a2
s � corrections to the

decay distributions, we have to consider the three-loop dia-
grams of the self-energy type, like those shown in Fig. 1,
and extract their imaginary parts. Initially, there are two
scales in the problem: using mb as a unit of energy, these
scales can be expressed as O �1� and O �d�. We em-
ploy asymptotic expansions to identify contributions aris-
ing from these widely separated scales. The region with all
loop momenta of O �1� does not contribute to the imagi-
nary part since it is analytic (polynomial) in d. When some
loop momenta are O �d� and others are O �1�, a three-loop
diagram factorizes into a product of one- and/or two-loop
diagrams and is easy to evaluate.

The nontrivial part of the calculation is the HQET limit
where all loop momenta are of O �d�. These diagrams are
similar to the three-loop HQET diagrams [8–10] but not
identical with them, since some of the lines in the present
case are on-shell. We have constructed an algorithm based
131801-2
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FIG. 1. Examples of diagrams whose cuts contribute to the
semileptonic decay b ! ulnl: (a) Abelian; (b) light or heavy
quarks; (c) non-Abelian.

on recurrence relations and integration-by-parts identities
[11] with which one can reduce any relevant three-loop
diagram to a linear combination of a few master integrals.
Four of these master integrals are new. We compute them
in the Euclidean �p2 � 21� , D � 4 2 2e dimensional
space.

Propagators occurring in the master integrals are
denoted by D1 � k2

1 , D2 � k2
2 , D3 � k2

3 , D4 �
�k1 2 k2�2, D5 � �k2 2 k3�2, D6 � 2pk1, D7 � 2pk2,
D8 � 2pk3, D9 � 2pk1 1 2pk2, D10 � 2pk1 1 2pk3,
D11 � 2pk1 1 2pk2 1 2pk3. The four new results are
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In the above formulas z3 is the Riemann zeta function,
z3 �

P`
i�1 1�i3, and Ce � p22eG�1 1 e�.

Using recurrence relations to reduce all loop integrals to
a combination of master integrals (these algebraic manipu-
lations are done with FORM [12]), we obtain the O �a2

s�
correction to the dilepton invariant mass spectrum (we use
the pole mass mb and the MS scheme for as)
1
G0

dG

djdj
� 6d2 2 4d3 1

as�mb�
p

X1 1

µ
as

p

∂2

X2 ,

(2)

where G0 � G2
F jVubj

2m5
b�192p3 and X1,2 denote the one-

loop [13] and two-loop corrections, respectively,
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X2 � CF�CFXA 1 CAXNA 1 TRNLXL 1 TRNHXH� , (3)
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where L � lnd and CF � 4�3, CA � 3, and TR � 1�2
are the usual SU(3) color factors, and NL and NH denote
the number of light �mq � 0� and heavy �mq � mb� quark
species. We use the approximation mc � mb since for
q2 . q2

0 there is no phase space available for charm quark
production. If needed, corrections for mc fi mb in virtual
effects can easily be computed.

For the coefficients XA, XNA, XL, XH we find
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For brevity we have presented the results accurate up to
the terms O �d3�. For the numerical analysis below we use
terms up to O �d8�.

We tested these results in several ways. We used a
general covariant gauge and checked the cancellation of
the gauge parameter. The result for XL agrees with the
numerical calculation in [14]. A simple interpolating for-
mula which we actually used for the comparison can be
found in the appendix of Ref. [2]. The agreement is very
good, practically for all values of d.

Further, we can extrapolate the results of the expansion
by taking the limit d ! 1 in which case our formulas
should describe the decay of a massive quark into a mass-
less quark and a massless W boson. In this limit, second
order QCD corrections were computed for the top quark
decay [15]. We find that for the color structures XNA,L,H

the difference between the two results is better than
10%. The agreement is much worse for the Abelian part
XA, where the difference can be as large as 50%. This
demonstrates that the seven terms of the expansion are
insufficient for the Abelian part to converge in the limit
d ! 1.

However, because of the SU(3) color factors, the con-
tribution of the Abelian part is suppressed and we can
reliably derive the O �a2

s � correction to top quark decay
from our formulas. Taking NL � 5 and NH � 1, we find
X2�2 � 216.4, whereas the central values of the coef-
ficients in [15] give 216.7. An even better agreement
is obtained for d � dW � 1 2 M2

W �m2
t � 0.79. At this
point, corresponding to physical values of the W boson and
top quark masses, the width of t ! bW was evaluated in
[16]. We have perfect agreement with the central value of
the second order correction, X2�dW��2 � 215.6, given in
Eq. (28) of that paper.

As the final check one can integrate Eq. (2) over d, ob-
taining the total decay rate b ! ulnl , for which the second
order QCD corrections are known [7]. Taking NL � 4 and
NH � 1 and integrating over d we obtain

R1
0 dd X2�d� �

221.24, in excellent agreement with 221.296, given in
Eq. (4) of Ref. [7].

Integrating the abelian contribution XA we can compute
the two-photon corrections to the muon lifetime [6,17]. We
find

R1
0 dd XA�d� � 3.1, where the 13% discrepancy with

the exact value in Eq. (9) of [6] is due to poor convergence
of our series for large d. However, if we assume that
the convergence is good up to d � 0.65 and extrapolate
for larger d using XA�1� � 7.0�4� [15], we reproduce the
muon lifetime correction [6] within 3%.

For d & 1�2, relevant for the extraction of jVubj, the
series converge very well and accurately approximate all
color components of the O �a2

s� correction.
The full O �a2

s � correction to the quark decay width,
X2�d�, is plotted in Fig. 2. Even at the end point d � 1,
our estimate for X2 agrees with our result for the top decay
[15] to better than 3%.

To show the impact of the computed corrections on
dilepton invariant mass distribution, we separate the
Brodsky-Lepage-MacKenzie (BLM) [18] and non-BLM
131801-3
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FIG. 2. O �a2
s � correction to the decay width b ! ulnl , X2�d�

[defined in Eq. (3)], as a function of d � 1 2 q2�m2
b (for NL �

3, NH � 2).

corrections since the former have already been studied
in the literature. We define the BLM and non-BLM
corrections as

XBLM
2 � 23CFb0XL, XnonBLM

2 � X2 2 XBLM
2 ,

(5)

where b0 � 11CA�12 2 TRNL�3 denotes the beta-
function coefficient in a theory with three massless quark
flavors, appropriate for the range of q2 used for the Vub

extraction.
The value of the BLM corrections is known to be

strongly correlated with the scale of the coupling constant
used in the one-loop result and also with the quark mass
used in the formula for the decay rate. A discussion of
these issues can be found in the literature [2] and we will
not consider them here. On the contrary, the non-BLM
corrections are new. Their dependence on d is shown in
Fig. 3 where the ratio of the non-BLM corrections and the
tree level decay rate 6d2 2 4d3 is plotted. For realistic
values of the strong coupling constant, as � 0.2 0.3,
the non-BLM corrections are about 5% in the range of
d relevant for the jVub j extraction from the dilepton
invariant mass spectrum.

The technique described in this Letter might open a way
to reliable estimates of the O �a2

s � corrections to more com-
plicated observables. For example, a simple modification
allows one to calculate the moments of the charged lepton
energy spectrum for a fixed value of the dilepton invariant
mass.

Recently, combined cuts on both dilepton and hadron in-
variant masses were advocated for the jVubj determination
[2]. It has been argued that in this approach one can keep
the theoretical uncertainties under control while retaining
a larger data sample of the b ! u transitions. Since the
calculation reported here has been performed without any
restriction on the hadronic invariant mass, our results for
the QCD corrections are not applicable in this case. How-
131801-4
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FIG. 3. The non-BLM corrections, XnonBLM
2 ��6d2 2 4d3� (for

NL � 3, NH � 2).

ever, a sufficiently large number of moments should con-
tain enough information about the spectrum to determine
the effect of the cut.
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