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We argue that models in which an observable variation of the fine structure constant is explained by
motion of a cosmic scalar field are not stable under renormalization and require massive fine-tuning that
cannot be explained by any known mechanism.
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Recent observations of distant quasars have revived the
suggestion that the fine structure constant a varies over
cosmological time scales. The observations of [1] suggest
a variation of da�a � 1024 over the time period since
emission of the quasar light.

Within both the contexts of effective field theory and M
theory, it is natural to model the change of the fine structure
constant by coupling a dynamical scalar field f to the
photon kinetic term in the low energy effective action.
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f

M
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Here M is a typical scale over which f varies, and e is an
additional parameter. For typical string moduli, M might
be of order the Planck or string scale, while e might be of
order 1, for axionlike fields which couple at tree level or
one loop. On the other hand, it can also be much smaller.

One can imagine two broad classes of scenarios to ex-
plain the putative variation of a. Usually, a slow, secular
variation of f is postulated. Another possibility is that
there was a first order phase transition between the time at
which the quasar light was emitted and the present. In this
Letter we argue that any such time variation of a raises dif-
ficulties. In particular, such a large variation of a can be
compatible with basic principles of quantum field theory
only if there is an extraordinary degree of fine-tuning of
many parameters of the underlying theory. (This conclu-
sion has also been reached by Kaloper and Susskind [2].
Closely related ideas have been discussed by Donoghue
[3], who also stresses that variation of couplings implies
variation of the cosmological constant and makes estimates
which are similar in spirit to some of those discussed here.)

Let us first state the basic argument and later show how
this comes out of concrete calculations. It is that the vac-
uum energy, as computed in the standard model, or in more
general low energy effective field theory, must depend on
a, even taking into account our ignorance about the reso-
lution of the cosmological constant problem. This depen-
dence can be estimated in various ways, and combining
these estimates with the criterion that the new contribu-
tions do not dominate the energy densities which appear
in standard cosmology leads to fantastically tight bounds.
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In generic quantum field theory, varying an arbitrary
dimensionless coupling such as a will lead to a variation
in the vacuum energy V controlled by the cutoff scale L,

dV � cdaL4 (2)

with c an O �1� constant. For example, in QED this
is �FmnFmn� and in perturbation theory c � 1�p 1 . . . .
Perturbative corrections and the effects of other matter in
the standard model will modify this result, but again lead
to c � O �1�.

The estimate (2) might well be an overestimate. If
throughout the relevant cosmic history the field f has been
near its minimum, the vacuum energy will be of order da2,

dV � Ca

µ
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a

∂2

L4. (3)

In models of quintessence or in which the change in a is
due to a phase transition, the first order estimate is likely
to be correct.

Let us be extremely conservative and take L to be the
QCD scale �100 MeV. Then

dV �

µ
da

a

∂
1029 eV4. (4)

However, the matter dominated era of conventional cos-
mology has a maximum energy density of order 104 eV4.
Thus, some of what is supposed to be the matter domi-
nated era, and in particular the period when the quasar
light was emitted, was instead dominated by a large scalar
field potential energy. This changes classical cosmology
completely and is ruled out by observation. At the earli-
est stages of galaxy formation, the energy density was of
order 1028 eV4. This argument leads to the bound, if the
variation is first order,Ç

da

a

Ç
, 10237. (5)

The bound is significantly weaker if the change is second
order, of order 10218, but still this estimate is many orders
of magnitude smaller than the variation inferred from the
quasar observations. It is necessary to suppress not only
the quadratic terms in the f potential, but terms up to very
high (roughly eighth or ninth) order, to accommodate a
variation of order 1024.
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As we noted, these estimates followed from an ex-
tremely conservative choice of L. There is every reason
to believe that nature is well described by local field the-
ory at scales below some higher L, possibly as high as the
Planck scale MP (this would lead to jda�aj , 102104).
There is no evidence that this general behavior depends on
the form of the theory above the cutoff scale. In particular,
corrections of this form invariably arise in string theory, in
instances where one can do the calculation.

The situation is not quite so extreme in supersymmetric
theories, which do generically cancel the vacuum energy.
Of course in the real world supersymmetry is broken, at
some scale MSUSY. The generic estimate in this situation
is

dV � cdaL2M2
SUSY . (6)

Supersymmetry generically cancels leading order diver-
gences but does not do better than that. In the most opti-
mistic scenario, a particular supersymmetric model might
indeed cancel all divergences, leading to dV ~ M4

SUSY.
Since experiment constrains MSUSY . 100 GeV, even if

dV � �da�2M4
SUSY (7)

we obtain da�a , 10224.
Note that this argument would apply both to a continu-

ous variation of a (we study this in more detail below), but
also to more drastic modifications of the physics between
early and late times, such as a first order phase transition.
Indeed, on general grounds one expects the vacuum energy
to decrease with time; in this situation a phase transition
can only increase the variation of the energy.

Let us now address a possible objection to this argument.
It is that normally we regard terms such as (2) as part
of the cosmological constant and imagine that they are
subtracted off by whatever mysterious agency resolves the
cosmological constant problem.

However, if a varies, general physical principles force
us to treat it effectively as a scalar field. Then, we should
not do this subtraction for all values of a but only for a
particular value: its asymptotic value, or perhaps its value
at the current era. There are many reasons to believe this:

(i) Subtracting the cosmological constant in low energy
effective field theory means fine-tuning the coefficient of
a single relevant operator. Subtracting the vacuum energy
for all values of a scalar field means fine-tuning the co-
efficients of an infinite number of relevant and irrelevant
operators.

(ii) All theories of inflation and quintessence assume
that the values of the potential away from the minimum of
a scalar field are nonzero. Indeed, if we imagined the so-
lution of the cosmological constant problem actually sub-
tracted away the potential of all scalar fields, we would not
even be able to implement the Higgs mechanism.

(ii) Specific proposals, e.g., [4] for explaining the mys-
tery of the cosmological constant involve fine-tuning only
the minimum value of the potential.
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Thus, this objection does not invalidate our conclusion
that observable variations of the fine structure constant are
highly unnatural.

To complete the discussion, we now study the cosmol-
ogy of a field f as postulated in (1) to see what type of
violations of naturalness are required to evade the bound.
Besides the coupling (1), we take f to be governed by the
Lagrangian

L � �≠f�2 2 V �f� . (8)

The potential energy V�f� will be modeled by the generic
form m4f�f�M�. If we neglect Hubble friction, the natu-
ral time scale for motion of this field is M�m2. For plau-
sible values of the microphysical parameters m and M, this
motion will be too rapid to fit the slow time variation of a.
We therefore assume that, until very recently, the motion
has been friction dominated. This requires MH�m2 ¿ 1
and M ¿ MP�48

p
p. Then

da21 �
4pem4

3M2

Z dtf0� f

M �
H

. (9)

The integral is over a period in the matter dominated era of
the universe. During this period, f�M changes only very
little, while f is a smooth function of order 1. Thus

da21 �
em4

M2

M2
P

rnow
. (10)

The energy density m4 can at most be of order rnow,
since otherwise we would have seen inflation rather than
matter domination and the calculation would not be self-
consistent. Thus we have

da21 #
eM2

P

M2 . (11)

If it is of order rnow then f is a form of quintessence
[5,6]. (Fine-tuning issues in quintessence models have
been considered in [7].)

At this point, one might conclude that O �1� values for e
and M�MP could lead to the desired result. However, we
still need to consider the effect of e on the vacuum energy.
This can be estimated along the lines discussed earlier. We
assume a supersymmetric theory to obtain

dV � �LMSUSY�2f2�ef�M� (12)

in terms of a smooth O �1� function f2. We furthermore
assume L $ MSUSY and then set L � MSUSY to obtain a
conservative bound.

In order that this interaction does not change our esti-
mate of the size of the potential, we must insist that

e #

p
rnow

M2
SUSY

, (13)

and this gives a stringent bound on the time variation of
the fine structure constant:

da
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. (14)
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Thus taking da � 1024a is inconsistent with our ini-
tial assumptions. That is, a field with M , 107 GeV and
m4 � rnow would not undergo friction dominated motion
during any part of the matter dominated era of the uni-
verse. Restoring consistency by requiring M . MP brings
us back to the bound (5).

The essential point is the same as in the first argument,
that for such a variation to be consistent with cosmology
requires fine-tuning of the potential over a range of pa-
rameters. Indeed, if we want V �f� � rnow over the entire
range 0 # da # 1024a, we must fine-tune away contri-
butions from (roughly) the first ten coefficients of the Tay-
lor expansion of the function g in (12).

A potential loophole in the argument as we just formu-
lated it is that we assumed the coupling (1), but this pre-
cludes the interesting case that V �f� vanishes at infinity
and that the scalar is evolving towards arbitrarily large val-
ues. Many models of quintessence assume such a potential.

This point can be dealt with by generalizing the La-
grangian to

L � g�f� �≠f�2 2 V �f� . (15)

Here g�f� is an arbitrary positive function which might
be thought of as related to wave function renormalization,
or better as a metric on the configuration space. Within
this family of Lagrangians, we can perform arbitrary field
redefinitions f ! f0�f�.

In fact, we can use this freedom to redefine f so that the
coupling (1) is exact; in other words define f by the rela-
tion ef�M � da21, the variation da around its late time
asymptotic value. The possibility we missed of f going
to infinity becomes, after the field redefinition, the possi-
bility that the integral

R
df g�f�1�2, the invariant measure

of distance in field space, could diverge as f ! 0. (We
are not being perfectly general yet as we are assuming that
the original relation between f and da was one to one.
One can generalize further, but this does not lead to further
illumination.)

Under our previous assumptions, the slow roll analysis
goes through in the same way, with the equation of motion

�f � 2g21�f�V 0�f�

and corresponding modifications to (9) and other equa-
tions. However, the main point does not require any
detailed analysis. It is that the new possibility, in this
language that g�f� diverges as f ! 0, would lead to a
slowing down of �a but does not affect the essential point
as seen in the first argument.

In general, the limit f ¿ L, which might be thought
to be problematic in effective field theory, in many cases
is not. Such field redefinitions can also be used to clarify
other limits; for example M ¿ MP, etc.

All this is not to say that scalars with potentials V�f� �
rnow are impossible. This still requires an extreme fine-
tuning, of course, but if we place suitable bounds on e,
leading to unobservably small da�a, one can argue that
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one has done only two fine-tunings, of m�MP and of e.
The most natural way to accomplish the second of these
would be to simply postulate a symmetry enforcing e � 0.

As far as we know, the only possible explanation of
such small numbers would be an axionlike shift symme-
try for the scalar field f. General arguments rule out glo-
bal continuous symmetries in theories including gravity.
However, there are axionlike fields that arise from higher
dimensional antisymmetric tensor gauge fields. A generic
context in which one might expect small axion potentials to
be generated is that of brane world models, like that of Ho-
rava and Witten [8]. There axions arise as would be gauge
modes of bulk gauge fields, and potentials are generated
by interaction with the boundary. In some Horava-Witten
models for the real world, one can obtain axions whose
potentials are generated by weak interaction instantons [9].
This can give rise to very small numbers for couplings that
would be of order 1 by dimensional analysis.

This reinforces the conclusion of [10] that axions are the
only known model of quintessence that might be consistent
with the naturalness constraints of quantum field theory.
Note, however, that [10–12] all point out various problems
with the idea of axions as quintessence.

Our overall conclusion is that we do not have any field
theoretically natural explanations for a variation of the fine
structure constant as large as would be required to explain
the observations of [1]. If these observations are con-
firmed, one will have to invent some very exotic physics
to explain them.

Following the philosophy we are advocating, and again
assuming that we are near a minimum of the effective
potential, general arguments about minima of functions
suggest that any correlated variation of couplings will yield
a similar bound. In particular, the limits on the fractional
variation of the electron mass and the QCD coupling will
be even more severe than those we have discussed here.

The research of M. R. D. and T. B. was supported in
part by DOE Grant No. DE-FG02-96ER40959, and the
research of M. D. and T. B. was supported in part by DOE
Grant No. DE-FG03-92ER40689.

Note added.— In this Letter, we have focused on the
variation of the fine structure constant, since this is the
manner in which the result of [1] is presented. However,
in any model in which the variation of a field leads to
variation of the fine structure constant, it is likely to lead
to variation of the other constants of nature, including the
electron mass and the QCD coupling, as well as (if nature
is supersymmetric) the scale of supersymmetry breaking.
Arguments suggesting correlated variations of several
couplings have recently been made in [13].
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