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Density Modulations of Bose-Einstein Condensates via Laser-Induced Interactions
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We show that the dipole-dipole interatomic forces induced by an off-resonant running laser beam can
lead to a self-bound pencil-shaped Bose condensate, even if the laser beam is a plane wave. For an
appropriate laser intensity the ground state has a quasi-one-dimensional density modulation—a Bose-

Einstein “supersolid.”
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Electrostriction is the tendency of matter to become
compressed in the presence of an electric field [1]. In an
optically trapped atomic Bose-Einstein condensate (BEC)
it is provided by the gradient of the incident electric field
(one-body dipole forces). However, it can occur even
if the external fields are homogeneous: the electrostric-
tion effects of dipole-dipole interatomic forces, induced
by certain configurations of far-off-resonant laser beams,
are capable of creating a self-bound BEC within a wave-
length of the laser (in the near zone) [2]. Thereby, a
physical situation can be realized which has analogies to
self-gravity [2,3].

Here we show that even in the simplest case of a single
plane-wave, far-off-resonant laser beam, a BEC can be
self-bound by electrostriction, due to the retarded behav-
ior of the induced dipole-dipole interaction. By contrast,
the purely static (1/r°) dipole-dipole interaction does not
allow for such self-binding [4]. The self-bound condensate
is predicted here to be elongated and compressed (pencil
shaped) along the axis of a circularly polarized laser beam,
in principle even for arbitrarily small intensity. As the
laser intensity increases, the electrostriction can give rise
to a remarkable one-dimensional density modulation of the
condensate in its ground state. Such a condensate bears a
similarity to a “supersolid,” i.e., a long-range crystalline-
like density modulation imposed upon a superfluid by in-
terparticle forces [5]. The formation of such structures
is associated with a strong enhancement of the elastically
scattered field, akin to collective (“superradiant”) Rayleigh
scattering [6,7], and with suppression of the heating due to
spontaneous Rayleigh scattering.

We consider a far-off-resonant circularly polarized laser
beam propagating along the positive Z direction with wave
vector ¢g (Fig. 1, inset). The dipole-dipole induced inter-
atomic potential [8] then becomes
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where x,y,z are the components of the interatomic sepa-
ration r. The induced potential is thus proportional to the
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laser intensity / and to a?(g), the squared atomic polariza-
bility at the frequency w = cq, which scales as the inverse
square of the detuning 82 from the nearest atomic reso-
nance [2]. The constant prefactor in (1) is conveniently
expressed as %hrmy, where /i,y = a2q31/677cs(2) is the
single-atom rate of Rayleigh scattering. This rate and the
corresponding saturation factor s = I must be kept suf-
ficiently small, by choosing an appropriate detuning, as de-
tailed below. The retarded oscillatory behavior of Eq. (1),
for gr = 1, will be shown to cause the self-binding of
a BEC, as opposed to its static 1/r* limit, obtained for
qgr < 1 [4].

We assume in the following that the condensate con-
tains many atoms per cubic wavelength, so as to ensure the
validity of a mean-field description of a zero-temperature
BEC with induced dipole-dipole forces [2,4]. Such a de-
scription can be accomplished through the Gross-Pitaevskii
equation [9] for the condensate order parameter W(r, 1)
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FIG. 1. Inset—the laser beam and condensate geometry.

RMS radii Ax and Az (normalized to A) of the self-bound
condensate versus the parameter I, (intensity / normalized to
87 h2cela/ma?) in the TF limit. Circles (diamonds) represent
the values of Az (Ax) calculated from the quasi-1D ansatz
Eq. (8). Long-dashed (dotted) lines represent the values of Az
(Ax) obtained from a Gaussian ansatz in all of the coordinates.

© 2002 The American Physical Society 130402-1



VOLUME 88, NUMBER 13

PHYSICAL REVIEW LETTERS

1 ApriL 2002

Here the total mean-field energy functional
Hiot = Hyin + Hpo + Hyq + Hgear (3)

consists of the following: (a) the kinetic energy

Hign = f (2 /2m) V| dr, 4

where m is the atomic mass; (b) the harmonic-trap energy
(later shown to be redundant under certain conditions)

Hy, zfvhoqulzdr, (5)

where Vio = mo?(x* + y?)/2 + mw?z?/2, is a cylin-
drically symmetric harmonic potential that can be caused
by the focusing of the laser beam; (c) the mean-field en-
ergy due to the short-range (s-wave) scattering

Hyw = Qmah*/m) f |W|*dr, (©6)

where a is a positive s-wave scattering length; and (d)
the electromagnetically induced dipole-dipole mean-field
energy

Haa = (1/2) f dr dr' Vaa(r — 1) [P,
@)

which corresponds to the electrostriction energy of the
medium in the plane-wave field, with V;; expressed by
Eq. (1).

The static near-zone (gr < 1) limit of the dipole-dipole
potential (1) is positive (repulsive) along the z axis and
negative in the radial direction, thereby precluding stable
binding. By contrast, the far-zone (retarded) behavior of
this potential « — cos(gz)?/qz is negative (attractive) for
any z, provided that the atoms are aligned along the z axis.
Nonaligned atoms feel less effective attraction, or even re-
pulsion, at far zone separations. Hence, an extended cloud
of atoms subject to interaction (1) is expected to have a
cigar-shaped ground state. We therefore adopt the follow-
ing cylindrically symmetric (about the axial Z direction)
variational ansatz for the macroscopic order parameter

W(r) = ¢ expl= (> + y2)/2wi /7 Pw,, (8)
where w, is the variational radial width. It is reasonable to
approximate the radial profile of ¥ by a Gaussian when its
width w, is less than half the laser wavelength A = 27 /q;
in which case the oscillations of (1) are not manifest along
x or y. We then obtain (z), as well as w,, by numeri-
cally minimizing the mean-field energy H, expressed by
Eqgs. 3)-(7).

The numerical solutions for the ground state, based
on (8), reveal the existence of a self-bound condensate,
without external confinement (Hy, = 0). Such solutions
are obtained in the Thomas-Fermi (TF) limit of negligi-
ble kinetic energy Hyin << Hgcat, Which characterizes con-
densates with many atoms N, as specified below. Then,
upon minimizing Hiot = Hda + Hscat, We obtain a nega-
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tive value of its expectation value (bound state) (plot-
ted in Fig. 3a) and, concurrently, finite mean quadratic
radii (Ax)?> = (x?) = w?/2 and (Az)> = (z?) (plotted in
Fig. 1), in the presence of a plane-wave laser. We have
verified that the static form of V,; « 1/r3 does not allow
for variational bound-state solutions.

The control parameter that allows one to play with the
ratio of the induced dipole-dipole forces to the s-wave
scattering is the dimensionless “intensity”

Ia’m

Ip 877686%2(1 ’ ®
The laser intensities corresponding to self-binding in Fig. 1
are below the threshold of the instability caused by the
static 1/73 part of the dipole-dipole potential (1) [4], I =
127 h2ceja/ma®(Ip = 3/2). Hence, the required inten-
sity can be, in principle, arbitrarily small for any positive
scattering length a.

Using a Gaussian ansatz for /(z) in (8), we obtain ana-
Iytical approximations for the radii of the condensate, nor-
malized to the laser wavelength A, in the limit /p < 1:

Ax = 0.11251,"% and Az = 0.784713!. For Ip > 0.1
the condensate is strongly confined in the radial direction,
with Ax ~ 0.2, and less confined in the longitudinal direc-
tion, with a typical size larger than or comparable to the
wavelength Az > 0.6.

The oscillatory long-range behavior of the potential (1)
is manifest along the Z axis, due to the large extension
of the condensate in this direction. To gain more insight
into this behavior, we introduce the 1D-reduced form
of the electromagnetically induced mean-field energy
HiE = (1/2) [dzdz' Vil (z = ) g @Pl ()P, ex-
pressed through the 1D-reduced dipole-dipole potential

exp[—(x% + y?)/2w?
Vi (2) = f dx dy pl (zwwi )/2w;]

r

Vaa(r).
(10)

This 1D-reduced interaction contains an attractive sin-
gular part  Vyg (2)lsing = —(ATway/q*w})8(2), which
arises from the interplay of _(x;;:y ) and ;3—2':5 in the
static limit of Eq. (1). For Ip < 1.5 this attractive
singular part is balanced by a similar repulsive term
VID (z) = (2ah?/mw?)6(z) which arises from the
(positive) s-wave scattering length, thereby stabilizing
the condensate. For Ip > 1.5 the system is therefore
unstable because of the static part of the 1/r3. Fig-
ure 2a shows the nonsingular part of VP for three
different values of the variational parameter w,. The
near-zone 1/z on-axis repulsion of the potential (1)
is evident in the dashed curve (for small w, = 0.1),
as opposed to the near-zone attraction (solid line) suf-
ficiently far off axis (for 0.2 = w, = 0.5). For large
values of z the 1D-reduced potential in Fig. 2a oscillates
as VIP(z) = —(3hT 4y /2q) cos(qz)*/z, but remains
attractive on average, indicating a macroscopic elec-
trostrictive force. Its Fourier transform (Fig. 2b) exhibits
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FIG. 2. (a) The 1D-reduced dipole-dipole interaction, in units
of /il',y, as a function of z (normalized to A), and (b) its Fourier
transform as a function of p, (normalized to ¢g). The dashed,
solid, and dotted lines correspond to increasing values of the
variational radial width (normalized to A) w, = 0.1, 0.2, and
0.3, respectively.

attractive logarithmic singularities at p, = 0, associated
with the average attraction, and at p, = *2g, which
can be attributed to the interference of the incident and
backscattered laser waves.

A conspicuous feature in the TF limit of negligible Hyin
is the abrupt modulation of the density along z, namely the
formation of isolated condensate droplets of size less than
A/4 at approximately A/2 separations. The correspond-
ing variational values for the ground-state energies, E,
are substantially below the ones obtained by a Gaussian
ansatz for (z) in (8), as displayed in Fig. 3a. This indi-
cates that such longitudinal density modulation further sta-
bilizes the condensate, which may seem counterintuitive.
This density modulation is due to the interference of the
backscattered and the incident fields, which creates a se-
ries of attractive traps at A/2 separations (Fig. 2a).

The changes in the density profile as the kinetic energy
becomes non-negligible can be discussed in terms of the
dimensionless parameter that scales with the number of
atoms N and the s-wave scattering length a,

n = Na/Ap . (11)

This parameter is approximately the ratio between Eto /N,
the TF ground-state energy per particle for Ip = 1, and
the recoil energy Ex = /i’q?/2m. The TF limit corre-
sponds to 7 large. As soon as the radial part of the kinetic
energy (/i2/2m) [dr W(9%/0x> + 02/9y>)¥ ~ NEgIp
becomes comparable to the TF mean-field energy, for
nlp ~ 1, both Ax and Az strongly increase with respect
to their TF-limit counterparts. This “bulging” of the
cigar-shaped condensate is due to the outward radial
pressure associated with the kinetic energy.

This pressure can be compensated, in the limit nlp <
1, by adding external radial confinement, e.g., by an ap-
propriate choice of the focus of the laser beam. Figure 3b

130402-3

0 T
<
L@ MRS i
Z o
°o
g <
m 2r Lo o
A
3 1 1
0.0 0.5 1.0 1.5
I
5 (b) n=100
Z .
o=
)
=
FIG. 3. (a) TF mean-field energies per particle (in units of

NaEg/A) versus Ip as obtained from the ansatz Eq. (8) (dia-
monds) and from the Gaussian ansatz (solid line). (b) Kinetic
energy effects: longitudinal equilibrium densities (in units of
N) as a function of z/A for different values of 1 at Ip = 1.
A radial external confinement is used to keep the radial size
of the condensate equal to that obtained for 7 >> 1 without
confinement.

shows the longitudinal density profile upon fixing the ra-
dial width w, while decreasing i from its TF limit ( >
100), corresponding to tightly bound (isolated) droplets
(solid curve), down to n < 1 (dashed curve), where ki-
netic energy effects dominate. Remarkably, in the range
1= nllz) =< 10 (dot-dashed curve), the single condensate
droplets overlap, creating new long-range ordered density
modulation—a Bose “supersolid” [5] is formed. In this
novel regime phase coherence is expected to arise between
the overlapping droplets that are distributed among the
wells. The density oscillations are washed out as soon as
nI%) =< 1 (dashed curve in Fig. 3b), i.e., when the z com-
ponent of the kinetic energy (~NEg), exceeds the energy
reduction caused by the TF density modulation (approxi-
mately the difference between the diamonds and solid line
in Fig. 3a).

Incoherent Rayleigh scattering from the far-off-resonant
laser beam leads to heating and depletes the condensate.
The rate of incoherent scattering, which is NIy, for N
noninteracting atoms is suppressed by the interatomic
interaction [10]. However, the corresponding rate of
change of the total energy is still given by the simple
universal expression [11] %(Etm) = 2ERNT,y, which
is independent of the interaction properties and corre-
sponds to N times the single-atom rate of energy change
2ERI'y,y. From the rate of change of the ground-state
energy we can estimate the effective “evaporation” or
“heating” time of the self-bound atomic cloud to be
Theat = |Etot]/(dEwo/dt) ~ nl%)rr;yl, where we used
Eq. (11) and our variational ansatz for the TF limit
nlh > 1.
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This time scale could be compared with the corre-
sponding values for the radial and longitudinal oscillation
frequencies of a self-bound condensate. We estimate the
radial frequency to be [12] Q, ~ (ER/E)Ii)/znl/z.
The fact that Tpea ), ~ (Eg/hl'tay) (771%))3/2 can be
much larger than 1 in the limit 5l A1 proves that
Rayleigh heating does not preclude the equilibration of the
self-bound condensate, which typically requires several
oscillation periods.

For the density modulations discussed above, most of
the photons are nearly elastically and coherently scattered
by the center of mass of the condensate. Their total scatter-
ing cross section is given by N2f., times the single-atom
cross section, where the center-of-mass fraction f.p, is de-
fined as an appropriate average over all the possible direc-
tions of scattering (in the Born approximation)

1

— 5 | dlcostoNll + cos@FIn@F. (12
Here n(p) is the Fourier component of atomic density cor-
responding to p = 2¢[sin(6)X%, 0, cos(6)Z], the momentum
transferred by a single photon in the x-z plane and 6 is the
angle between the incident beam and the scattered direc-
tion. Only the (complementary) fraction of the rate of en-
ergy change (1 — fcm)%(Etm), contributes to the inelastic
part of the scattering cross section, whence f., provides a
partial suppression of heating.

The center of mass of the condensate is therefore subject
to a constant radiation force that is enhanced by a factor
Nfem by the density modulation, associated with the co-
herent back scattering (diffraction) of the electromagnetic
field. This radiation force can either shift the equilibrium
position of the condensate, if it is located in a longitudinal
trap, or else accelerate it uniformly. In the latter case the
scattered light will be slightly Doppler shifted. The effects
described here are due to the same matter-field interactions
as those responsible for “superradiant” Rayleigh scattering
[6] and collective atomic recoil (CARL) [7]. However, the
essence of our effects is the electrostrictive change of the
atomic energy and density, unaccounted for thus far.

A central prediction of this paper is that induced
dipole-dipole forces result in a density modulation for the
condensate ground state.  Density modulations in a
condensate can also arise from presence of phonon exci-
tations, as demonstrated by Inouye et al. [6] in the case of
superradiant Rayleigh scattering. Traveling phonons can
be distinguished from the ground-state density modulation
proposed here by diffracting a nearly perpendicular
probe laser whose z component of the wave vector is
k., = 2q. Phonons at frequency ) = v 2¢q, where v;
is the sound velocity, lead to a density modulation of
the form cos(2gz — ()¢), so that the first diffraction

fCIIl
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orders (i.e., Brillouin peaks) of the probe beam will be
frequency shifted by (). By contrast, diffraction from
the ground-state density modulation discussed above will
be elastic, with no frequency shift.

An example of the experimental conditions required for
the predicted effects involves N ~ 10 sodium atoms and
a circularly polarized laser beam, red detuned by 1.7 GHz
from the 35> (F = 1) = 3P3), (F = 0,1,2) transition,
for which Ex/h = 25 kHz. The threshold for 1/r3 in-
stability is then at I =~ 525 mW/cm?, correspondingly,
I'ray = 2.9 kHz. Below this intensity, one can observe the
self-binding, the density modulation, and the acceleration
of the center of mass =500Nf.n [m/s?], with fem ~ 0.1
for Ip ~ 1 and fey ~ 1 for Ip < 1.

To conclude, we have demonstrated a new quasi-one-
dimensional regime of self-confined and self-organized
ground-state density modulations in a BEC illuminated
by a single, circularly polarized laser beam in the weak-
saturation limit. This regime is inherently possible even
for a plane-wave laser, although it is facilitated by the ra-
dial focusing of the beam.
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