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Undulation Instability of Lipid Membranes under an Electric Field
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The influence of an external electric field on a poorly conductive membrane such as a lipid bilayer
is studied theoretically. The unbalanced electric stress created by an ionic current across a nonperfectly
flat membrane gives rise to a destabilizing surface energy enhancing undulations. The deformation of
a membrane attached to a frame is derived and the electrohydrodynamic instability of a free floating
membrane is studied. We find a most unstable mode of undulation, of wavelength in the mm range,
connected to the crossover between membrane and solvent dominated dissipations.
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Because of their low permeability to electrolytes, bio-
logical or other lipid membranes are strongly influenced
by applied electric fields. Researchers are actively inves-
tigating phenomena such as electroporation (creation of
long-lived pores in a lipid membrane under the action of
a strong electric field) [1,2] and electroinjection of macro-
molecules in vesicles and cells [3] in part because of very
promising applications for gene therapy. Other topics, such
as the electroformation of liposomes [4] or the electrofu-
sion of vesicles and cells [5], require a better understanding
of the action of electric fields on lipid bilayers.

This paper discusses the out-of-equilibrium properties of
a lipid membrane under electric field. We observe quali-
tatively different and potentially much stronger effects than
in the case of bending deformation of charged fluid mem-
branes at thermal equilibrium, which has been investigated
both from the statics [6,7] and dynamics [8] points of
view. The effect is quite strong because the conduction
charges brought by the field at the membrane interfaces
are themselves under the action of the field, and render
the membrane unstable to deformations in the direction of
field. This generic phenomenon occurs at any interface
between media of different electrical conductivities [9,10],
and the interplay between electric and a variety of me-
chanical stresses (surface tension, gravity, etc.) may be re-
sponsible for the appearance of interfacial patterns [11,12].
As we show below, an electric field has a very specific
impact on lipid membranes due to the peculiar statics
(bending and stretching energies), and dynamics (viscous
dissipation, internal friction between monolayers) of fluid
membranes.

We study the effect of a field on (i) the energetics of a
fluid membrane attached on a rigid frame, and (ii) the dy-
namic instability of a free floating membrane. Our main
results are as follows. An electric field applied to a ten-
sionless lipid membrane gives rise to a (potentially large)
lateral tension in the membrane, which depends only upon
the strength of the applied field and a few constitutive pa-
rameters of the membrane. Beyond a threshold this ten-
sion can be responsible for the electrical breakdown of
the membrane (see [1]). The external field leads to an
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electrohydrodynamic instability of the membrane. A most
unstable mode in the micrometer range is selected by the
peculiar dynamics of lipid membranes.

The force experienced by an interface in an electric
field E can be calculated by evaluating the discontinuity
of the Maxwell stress tensor sij � e�EiEj 2

1
2E2dij�

across the interface [13]. We consider an infinite mem-
brane of dielectric constant em��2e0� and conductivity
x21

m ��1026 S�m� in a solvent of dielectric constant
e1��80e0� and conductivity x

21
1 ��1021 S�m� (numbers

are typical for a lipid membrane in water, e0 is the per-
mittivity of vacuum). A fixed electric field E (in practice,
a fixed electric current j � x

21
1 E) is applied across the

membrane, and we note Em the electric field inside the
membrane. The electric stress at the membrane interfaces
can be understood as the force exerted by the conduction
charges brought by the field at the interfaces (the surface
charge density induced by the field is of opposite sign at
each interface, and of order S6 � 6emEm).

If the membrane is perfectly flat, the electric stress is
symmetrically balanced on both sides of the membrane
(i.e., sel � emE2

m 2 emE2
m � 0), which experiences a

mere compression [14]. As already pointed out in [2],
this perfect cancellation of the net electric stress is, how-
ever, accidental since any membrane curvature leads to
an unbalanced net stress whose order of magnitude can
be expressed as sel � emE2

md�R, where d is the thick-
ness of the membrane and R its local radius of curva-
ture (a curvature of the membrane leads to a nonuniform
surface charge density —see Fig. 1). In the case of a
closed vesicle [2], Em is given by the potential drop at
the vesicle scale (i.e., Em � ER�d) as most of the electric
field goes around the finite sized object, whereas the cur-
rent continuity across the (infinite) membrane dictates the
expression of Em here, namely Em � Exm�x1. This
resulting stress sel tends to enhance the (small) local
undulations of the membrane u�r� �

P
q uqeiqr (Monge

representation in real and Fourier space). This can be un-
derstood from Fig. 1 from the redistribution of conduction
charges at the interfaces, noting that the electric stress sel

can be rewritten in terms of surface charge densities, i.e.,
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FIG. 1. Net accumulation of conduction charges near a curved
lipid membrane under electric field.

sel � �S2
1 2 S2

2��em. After a short transient time te �
�em�d�x1H � 1026 1025 s (H is the distance between
the electrodes), the solution of the Poisson equation (in
the limit emx2

m ¿ e1x
2
1 ) yields the following expression

for a given Fourier mode: sel � 2em�Exm�x1�2�eqd 2
1���eqd 1 1�u�r�. Hence, integrating the work of the elec-
tric stress (in the large wavelength limit qd ø 1) yields a
net decrease in energy

Fel � 2
Gel

2

Z
dS�=u�2, Gel � em

µ
xm

x1

∂2

E2d .

(1)

At the linear order, this amounts to an effective negative
surface tension Gel acting on the membrane (an example of
nonlinear effect is discussed in [15]). In the presence of a
lipid reservoir (or at the interface between two immiscible
fluids of different conductivity), the electric field induces
a decrease of the interfacial tension, known as the elec-
trocapillary effect [9]. On the contrary, for a fixed num-
ber of surfactants, enhancing membrane undulations under
electric field builds a concomitant mechanical tension be-
cause of deviation from the nominal area per molecule.
Hence we expect a tense yet floppy-looking membrane
in this case. For typical values of the electric field used
in the electroporation and electroformation experiments
E � 103 V�m, the electrostatic surface tension reaches
Gel � 1023 J�m2, which is comparable to the mechani-
cal tension needed to rupture a lipid membrane [1].

Two consequences of this destabilizing effect are studied
below: (i) a membrane on a fixed frame is deformed until
the electric stress is balanced by an opposing mechanical
stress, and (ii) a free membrane undergoes strong undula-
tions under electric field.

Deformation of a bilayer attached to a fixed
frame.—The elastic behavior of a lipid membrane
is generally characterized by a bending modulus
k ��5 3 10220 J�, and a stretching modulus Ks

��0.2 J�m2� [16]. Typically, bending a lipid membrane
involves energies of order 1 2 10kBT , while stretching it
requires much larger energies. To simplify the description
below, we will not include the bending rigidity in the
treatment of the static deformation of the membrane, nor
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will we include the thermal fluctuations of the membrane,
restricting ourselves to large electric fields.

We write a linear theory for small deformations of the
membrane quq ø 1. The membrane is characterized by
its total area S, its projected area Sp, and its optimum
area for which it is not stretched S0 (corresponding to a
membrane thickness d0� . We use the two small parame-
ters d � �Sp 2 S0��S0 and I � �S 2 Sp��S0 �
�1 1 d�1

2

P
q2juqj

2 � 1
2

P
q2juqj

2. The total membrane
energy (including electric effects and stretching) reads

F � S0�1
2 Ks�d 1 I �2 2 GelI � . (2)

The electric field-induced undulation term �Gel� is
quadratic in quq, while the stretching term �Ks� goes up
to the fourth order, consistent with the large value of the
ratio of the stretching over the electrostatic parameters
b � Ks�Gel . 100.

The minimization of this energy with respect to the area
difference I leads to an equilibrium class of membrane
shapes corresponding to a total area difference DS

DS � d 1 Ieq �
Gel

Ks
� 1022. (3)

The energy of the membrane only is Fm �
1
2S0G

2
el�Ks,

and the energy of the system, including the electrostatic en-
ergy, is F � Fm 1 Fel � 2

1
2S0G

2
el�Ks 1 S0Geld. The

surface tension of the lipid membrane is given by g �
≠Fm�≠S with S � S0�1 1 d 1 I �. At equilibrium, the
mechanical tension is equal, but opposite in sign, to the
electrostatic energy per unit area: g � Gel . The building
of a mechanical tension in a membrane under electric field
is due to an increase of its area.

Note that the membrane thinning under stretching does
not need to be taken into account, as it contributes to
higher order terms ��GelId� only. Note also that the
linear theory presented here assumes that membrane
parameters such as xm and em remain constant upon
small membrane stretching. Beyond this linear regime,
we expect, in particular, the creation of holes in the mem-
brane, which abruptly increase the membrane electrical
conductivity.

It is clear from Eq. (3) that the balance between electric
field-induced undulation and membrane stretching does
not select a particular equilibrium membrane shape, as
both effects depend on the global increase of membrane
area only. Including the bending energy of the mem-
brane selects the shape of lowest curvature, namely the
first harmonic q1 � p�

p
Sp . The energy gap between

the different harmonics is, however, small (of order kBT )
for qlk , 1, where lk � 2p

p
k�Gel . For large electric

fields �E � 103 V�m�, lk is very small ��50 nm�. For
small electric fields, the thermal fluctuations dominate both
the membrane shape and tension. We postpone the study
of the interesting crossover between these two limits to a
future publication.
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Instability of free floating membranes under electric
field.—We now study the case of a free floating mem-
brane under electric field. The dynamics of a free mem-
brane under the action of a field can be decomposed into
two mechanisms. (i) The normal deformation of the mem-
brane (described in the previous section), which creates a
tension g in the membrane and saturates when g � Gel .
(ii) The lateral sliding (contraction) of the membrane, in
an attempt to release this tension. The characteristic time
for the normal deformation for a given undulation mode of
wavelength l is t� � hl�Gel (�1026 s for l � 1 mm),
while the sliding motion involves the whole membrane
tk � hL�Gel (�1023 s for L � 1 mm, see details be-
low). The two mechanisms occur at very different time
scales, and can be treated separately.

A thorough treatment of the undulation modes of a film
immersed in a solvent can be found in the literature [17].
The electrohydrodynamic instability of a layer of noncon-
ducting fluid between two semi-infinite conducting fluids
has been studied in [10], where special attention is given to
the peristaltic deformation modes (the two interfaces un-
dulating in antiphase), as these modes lead to the destruc-
tion of the film when the two interfaces make contact. In
the case of a lipid membrane, these peristaltic modes are
suppressed because of the very low compressibility of the
film. We study below the bending instability (interfaces
undulating in phase) of the membrane.

(i) The normal displacement of the membrane involves
viscous dissipation in and around the membrane [18,19].
There are three main sources of dissipation, namely the dis-
sipation in the solvent (viscosity h � 1023 Pa ? s), which
dominates the dynamics of large wavelengths deforma-
tion, the friction between the two monolayers (friction
coefficient bfr � 108 Pa ? s�m), dominant at intermedi-
ate wavelengths, and the membrane surface dissipation
(surface viscosity m � 10210 Pa ? s ? m). For fluid lipid
membranes, the latter mechanism is relevant at very small
wavelength of the order of the bilayer thickness d � 5 nm
only, and will be neglected altogether. We present below
a simplified description of the interplay between external
and internal dynamics. For a thorough treatment of mem-
brane dynamics, see Seifert [18].

Neglecting inertia, a normal deformation of the mem-
brane (of typical lateral size 2p�q and typical velocity �uq)
creates a motion in the surrounding fluid which propagates
to a distance �1�q. The curvature of the membrane leads
to a velocity difference of order dy � qd �uq between the
two monolayers. The power dissipated by viscous effect
around and in the membrane can be written, respectively,

Ph � h
Z

dV �=y�2 � Sh
X
q

q �u2
q ,

Pfr � bfr

Z
dS�dy�2 � Sbfr

X
q

d2q2 �u2
q .

(4)

This dissipated power must compensate the power stored
in the membrane Pm � ≠tF [the energy F is given by
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Eq. (2)]. This condition leads to an evolution equation for
each deformation mode:

�hq 1 bfrd2q2� �uq�t� � �Gelq
2	1 2 b�d�t� 1 I �t��


2 kq4�uq�t� (5)

with b � KS�Gel . 100. The left hand side of this equa-
tion describes the viscous dissipation in and around the
membrane and the right hand side consists of the electric
field-induced undulation term �Gel� with a stretching satu-
ration (b term). Note that the bending rigidity of the
membrane has been added to the membrane energy (k
term), for it is mandatory if one wishes to describe the
small wavelength deformations q .

p
Gel�k. This equa-

tion is nonlinear, since the saturation involves the total in-
crease of area I �

1
2

P
q q2juqj

2. Thanks to the different
time scales for normal and lateral motions, the projected
area of the membrane Sp�t� � S0�1 1 d�t�� can be con-
sidered as constant for the short time evolution.

The nonlinear equation can be solved, but for our pur-
pose, it is sufficient to consider its linearized form, and to
treat the saturation dynamics separately. The short time
evolution is described by the linear equation

�hq 1 bfrd2q2� �uq � �Gelq
2 2 kq4�uq . (6)

The amplitude of a given Fourier mode has a time evolution
uq�t� � eaqt with

aq �
Gel

h
q

µ
1 2 �q�qstat�2

1 1 q�qdyn

∂
(7)

with the two characteristic wave vectors

qstat �

s
Gel

k
� 108 m21,

qdyn �
h

bd2
� 5 3 105 m21.

(8)

The evolution rate presents a sharp maximum at

q� � �qdynq2
stat�

1�3 � 2 3 107 m21 (9)

for qstat ¿ qdyn. This defines a particular length
scale which grows exponentially faster than the others:
l� � 2p�q� � 0.5 mm. The corresponding growth rate
is a�

q � G

bd2 � 5 3 105 s21. The evolution saturates
similarly for all length scales when b�d�t� 1 I �t�� � 1,
at which point a mechanical tension Gel is established,
leading to a contraction of the membrane.

In many practical situations, fixed boundaries or walls at
a distance h from the membrane may strongly modify the
solvent hydrodynamics. From wavelengths larger than the
distance to the wall, the membrane displacement creates a
solvent flow which is mostly parallel to the wall and varies
mostly in the direction normal to the wall. Because of
the incompressibility of the solvent, the lateral velocity is
of order yx � �u��qh� and the dissipated power [Eq. (4)]
becomes Ph,h � Sh

P
q �u2

q�q2h3 for qh , 1. The left
hand side of Eq. (6) is modified accordingly, and shows
an optimal wave vector q�

h �
p

q��h where q� is given by
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Eq. (9). For h � 10 nm, the fastest growing wavelength
is of order 2p�q�

h � 0.1 mm.
(ii) The lateral motion of the membrane occurs at an al-

most constant surface tension, because the time needed to
build up the tension t� is much smaller than the time over
which it could be released. The contraction of the mem-
brane involves solvent flow over large length scales (the
membrane size �mm). In consequence, (i) solvent iner-
tial effects must be included to calculate the viscous dissi-
pation, and (ii) the shape of membrane corrugations have
little effect on the solvent flow, which depends only on
the total area reduction. Hence the evolution of the mem-
brane projected area Sp [or the variable d � Sp�S0 2 1 in
Eq. (5)] does not influence the value of the fastest growing
mode q� [Eq. (9)]. We give below some qualitative argu-
ments to derive d�t� both for a free membrane and for a
membrane in the vicinity of a solid wall [20]. More than
the actual form of d�t�, we stress again that the important
point here is that the contraction dynamics does not mod-
ify q�.

The solvent flow near an impulsively started plate of

size L0 extends over a size Lz � L0�
q

1 1 L2
0�nt where

n � h�r is the kinematic viscosity (�1026 m2�s for wa-
ter —r is the density of water) [21]. For a membrane near
a wall, this size quickly saturates to Lz � h, for a free
membrane, it saturates to Lz � L0 after a time tn � L2

0�n

(�1 s for L0 � 1 mm). Balancing the viscous dissipa-
tion with the energy gain (per unit time) accompanying
the contraction of the membrane under (constant) surface
tension, one obtains qualitatively the short time kinetics
of contraction: d � 2�t�tslide�3�2 for a free membrane,
and d � 2t�tslide,h for a membrane near a wall. Both
kinetics involve the characteristic times tG � hL0�Gel �
1023 s and tn � L2

0�n � 1 s. The contraction time for a
free membrane is fairly fast: tslide � �t2

Gtn�1�3 � 1022 s,
while it is much slower for a membrane near a wall:
tslide,h � tGL0�h � 102 s (note that a quantitative theory
should include solvent permeation through the membrane
in this confined situation).

To conclude this paper, we propose that the electrody-
namic instability described above may play an important
role in the first stage of the electroformation of liposomes,
which consists in a controlled swelling of an electrode de-
posit of (charged or neutral) lipids to form vesicles of fairly
well controlled sizes under electric field [4]. A remark-
able feature of this technique is that it produces vesicles of
fairly well defined size. We find a fastest growing undu-
lation mode of wavelength in the mm range [Eqs. (8) and
(9)]. This mode might be the precursor of large scale defor-
mations of the membrane which, after a complex process
partly sketched in Ref. [4] and involving coalescence of
neighboring blisters, lead to the formation of closed vesi-
cles. Future developments will include the treatment of
small pores which are expected to be present in a mem-
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brane under tension, and their influence on both the mem-
brane electrical conductivity (hence Gel) and dynamics
(solvent permeation through the membrane).
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