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We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show
that this scheme is more secure against symmetric attacks than protocols using two-dimensional states.
We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the con-
nection with optimal quantum cloning.
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Quantum cryptography, as first suggested by Bennett
and Brassard (BB84) [1], is the experimentally most ad-
vanced application of quantum information processing.
Recently, the use of three-level systems rather than two-
level systems for establishing a secure quantum key has
been suggested [2]. The authors study the case of 4 mu-
tually unbiased bases, i.e., 12 basis states. They consider
an eavesdropper that uses the most simple strategy, namely
measuring the state and resending it. For this case they find
that a three-dimensional system leads to a higher security
than a two-dimensional one.

In order to compare the security of different quantum
key distribution protocols, however, one has to study the
most general eavesdropping attack. This is the aim of
our work. Optimal eavesdropping strategies for the BB84
protocol and the six-state protocol have been studied in [3]
and [4,5], respectively.

We concentrate our attention on incoherent attacks;
namely, we assume that the eavesdropper interacts with a
single three-dimensional quantum system at a time. We
study the case where the action of the eavesdropper dis-
turbs all the possible quantum states by the same amount.
Denoting with �j0�, j1�, j2�� a basis for the system, the
most general unitary eavesdropping strategy for a set of
three-dimensional states can be written as
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Here 1 2 D is the fidelity of the state that arrives at Bob’s
site after Eve’s interaction. The disturbance is given by
D. We assume the disturbance of the two basis states that
are orthogonal to the original to be equal: this symmetry
is motivated by the fact that the three basis states should
be treated in the same manner. The initial state of Eve’s
system is called jA�, and her states after interaction are
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labeled jA0�, B0�, . . . and are normalized. Their dimension
is not fixed.

We have to satisfy unitarity of U . This leads to the
constraintss
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We consider the cryptographic protocol suggested in
Ref. [2], where the four mutually unbiased bases are given
by �j0�, j1�, j2��, and
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where v � e2pi�3.
We restrict ourselves to the case of symmetric attacks,

i.e., Eve is supposed to introduce an equal disturbance to
all possible input states written above. [If the noise of the
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physical device is known to be symmetric, then Alice and
Bob could detect an asymmetric eavesdropper by checking
the error rate in a subset of states. Otherwise, the trade-
off between Eve’s information and the signal key is more
complicated to handle.] We can then directly compare
the security to the six state scheme for qubits, where only
127901-2
symmetric attacks have been studied. By imposing that the
disturbance D � 1 2 Tr�jci� �ci j�

out
B �, where �out

B is the
reduced density operator of the state sent on to Bob, takes
the same value for all 12 possible input states jci�, we de-
rive the following relations that involve the scalar products
of Eve’s output states:
q
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Note that both real and imaginary parts of these expres-
sions have to vanish. Writing the disturbance introduced
through the eavesdropping transformation (1) as a function
of the scalar products of Eve’s states, and taking into ac-
count unitarity (2) and the conditions (6)–(9), we find the
following simple form:

D � 2
1 2 S
3 2 2S

, (10)

where S � Re��A0jB1� 1 �B1jC2� 1 �C2jA0�	�3. Notice
that in the expression for the disturbance only the scalar
products among the eavesdropper’s states jA0�, jB1�, and
jC2� appear, while all the others do not contribute.

We will now derive the optimal eavesdropping transfor-
mation for a fixed value D of the disturbance, namely we
maximize the mutual information IAE between Alice and
Eve. (This is a standard figure of merit for the descrip-
tion of the efficiency of an eavesdropping attack [3].) As
mentioned above, the disturbance introduced by Eve is in-
dependent of the scalar products of her states, apart from
the ones involving jA0�, jB1�, and jC2�. Therefore, for any
value of D, Eve is free to choose those states on which D
does not depend in such a way that she retrieves the maxi-
mal information. The optimal choice is to take all of these
states orthogonal to each other, because in this case Eve
can infer the original state sent by Alice in an unambigu-
ous way from her measured state.

We will now consider only the scalar products that ap-
pear in S and choose them such that the mutual information
is maximized for fixed S, i.e., for a given disturbance D.
We introduce the general parametrization for the normal-
ized auxiliary states,

jA0� � xAj0� 1 yAj1� 1 zAj2� ,

jB1� � xBj0� 1 yBj1� 1 zBj2� ,

jC2� � xC j0� 1 yCj1� 1 zCj2� , (11)

where �j0�, j1�, j2�� is an orthonormal basis which is or-
thogonal to all the other auxiliary states. In order to treat
the basis states j0�, j1�, j2� in the same way, we require
that the overlaps of these three states be equal. We choose
xA � yB � zC � x, while all other coefficients are equal.
Without loss of generality we can take the coefficients to
be real.

With this strategy we find the optimal mutual informa-
tion between Alice and Eve to be
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∑
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2

∏
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where f�D� is given by
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p
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The relation between x and D is x2 � f�D�. Inserting
this into Eqs. (11) leads, together with the ansatz (1) and a
straightforward choice of the ancilla states, to the explicit
form of the optimal transformation. Eve needs to employ
two three-level systems for the optimal attack.

The information for Bob decreases with increasing dis-
turbance:

IAB � 1 1 �1 2 D� log3�1 2 D� 1 D log3
D
2

. (14)

Note that we renormalized the functions given in (12)
and (14), as in [2], in order to be able to directly relate the
values to the two-dimensional case.

We will now compare the security of the three-
dimensional scenario as described above with the most
secure two-dimensional scheme, that employs six states
(i.e., three mutually unbiased bases) [4,5]. The according
information curves of both protocols are shown in Fig. 1.

We find that the three-dimensional protocol is more se-
cure in two respects: first, the information curves for
Bob and Eve intersect at a higher disturbance Dc than
for the two-dimensional case, namely Dc,3 � 0.227, while
Dc,2 � 0.156. In other words, Eve has to introduce more
noise in order to gain the same information as Bob. In gen-
eral, for disturbances D , Dc, a key distribution protocol
127901-2
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FIG. 1. Mutual information for Alice/Bob and Alice/Eve as
a function of the disturbance, for two-dimensional and three-
dimensional quantum states.

can be considered secure, because IAB . IAE [3]. There-
fore, the three-dimensional protocol is secure up to higher
disturbances. Second, for a fixed disturbance D , Dc,
Bob gets more and Eve less information than in the two-
dimensional case. The price that has to be payed for higher
security is a lower efficiency: the basis for Bob matches
the one of Alice in fewer cases than for two dimensions,
as the number of bases is increased.

Notice that our derivation of the optimal eavesdropping
transformation relies on equations (6)–(9) which guarantee
that all the possible input states are disturbed in the same
way. If we reduce the number of bases, not all of these
conditions will be necessary, thus leading to a less simple
structure of D than the one given in (10). This would al-
low a different general form of the optimal eavesdropping
transformation, and a higher curve for IAE . The analogous
behavior was shown for the two-dimensional case in [4,5],
where the six-state protocol and the BB84 scheme were
compared.

Generalizing the ansatz given in (1) and the structure
of the ancilla states as in (11) to higher dimensions, we
find a lower bound on the eavesdropper’s information for
quantum cryptography with d-dimensional systems. The
general ansatz is then
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q
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(The alphabet denoting Eve’s states is supposed to contain
d letters.) The according generalized formula for the
disturbance as a function of the scalar products is

D �
�d 2 1� �1 2 S�
d 2 S�d 2 1�

, (16)
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where S is now the real part of the average of all possible
scalar products between jA0�, jB1�, . . . . The function f is
then given by

fd�D� �
d 2 2D 1

p
�d 2 2D�2 2 d2�1 2 2D�2

d2�1 2 D�
.

(17)

In Fig. 2 we plot Eve’s corresponding information

IAE,d � 1 1 �1 2 D�
∑
fd�D� logdfd�D� 1 �1 2 fd�D�	

3 logd
1 2 fd�D�

d 2 1

∏
, (18)

as a function of the dimension d for a fixed value of the
disturbance D. We conjecture that this mutual information
is optimal when employing the maximal number of mutu-
ally unbiased bases for a given dimension [6].

Finally, we discuss the connection between optimal
eavesdropping strategies and optimal cloning transforma-
tions. The information that Eve can gain is restricted by
the laws of quantum mechanics, namely the no-cloning
theorem [7]. Let us point out, however, that there is,
in general, no direct connection between limits on the
cloning fidelity for a given d-dimensional state, and the
intersection of the information curves of Bob and Eve.
The reason is that approximate cloning transformations
[8] are only a subset of our family of transformations U

given in Eq. (1), because an additional symmetry between
the first of Eve’s states and Bob’s state is required for
cloning. Indeed, if Eve would read only the first of her
two states, the disturbance for the intersection between
the two resulting information curves would correspond
to the fidelity of the optimal cloner. Reading both states
increases her information. Therefore, the knowledge of
cloning transformations for d-dimensional systems [9]
allows us only to find a lower bound on Eve’s information
at a given disturbance.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

2 3 4 5 6 7 8 9 10

I

d

FIG. 2. Mutual information between Eve and Alice as a func-
tion of the dimension, for D � 0.1.
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In summary, we have found a remarkable feature of
higher-dimensional quantum systems: we have proven
analytically for dimension d � 3 that the most general
symmetric attack of an eavesdropper gives her less infor-
mation than in the case of qubits. Therefore a three-
dimensional scheme offers higher security than
two-dimensional systems. We generalized the upper
limit for Eve’s information IAE from d � 3 to higher
dimensions: this limit decreases with the dimension, and
numerically we find that it reaches IAE � D in the limit
d ! `. As quantum cryptography is the most advanced
technology in quantum information, and security issues
play a fundamental role in any study of cryptography, it is
important to discuss quantitative properties of the security
in quantum key distribution: here quantity becomes
quality.

While completing this manuscript we learned about re-
lated work by M. Bourennane et al. [10].
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