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A dynamical mean-field theory analysis of the attractive Hubbard model in the normal phase is carried
out upon restricting to solutions where superconducting order is not allowed. A clear first-order pairing
transition as a function of the coupling takes place at all the electron densities out of half filling between a
Fermi liquid, stable for U , Uc, and an insulating bound pairs phase for U . Uc, and it is accompanied
by phase separation. The spectral function in the metallic phase is constituted by a low-energy structure
around the Fermi level, which disappears discontinuously at U � Uc, and two high-energy features
(Hubbard bands), which persist in the insulating phase.
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The experimental finding that the (zero-temperature) co-
herence length of cuprate superconductors is much smaller
than for conventional superconductors has suggested that
these compounds lie in an intermediate coupling regime,
between the weak-coupling and the strong-coupling lim-
its [1,2]. Moreover, the recent finding from angular re-
solved photoemission of the existence of a (pseudo)gap
in the single-particle spectrum well above the supercon-
ducting critical temperature, i.e., in the normal phase, has
been usually interpreted in terms of preformed Cooper
pairs with no phase coherence. This gave emphasis to the
relevant theoretical issues related to the description of the
superconducting phase in the crossover regime between
the standard BCS and the Bose-Einstein (BE) condensation
together with the description of the normal state, where
preformed pairs or dynamical superconducting fluctuations
give rise to the pseudogap phenomenology. Regarding the
pseudogap regime, various perturbative schemes have been
adopted, without a firm unambiguous understanding of the
electron pairing in the normal state [3].

Much attention has been devoted to the attractive
Hubbard model as an almost ideal framework, where the
pairing between the electrons can be described in all the
different coupling regimes, without complications due to
other physical effects. The Hubbard Hamiltonian reads
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where c
y
is �cis� creates (destroys) an electron with spin s

on the site i and nis � c
y
iscs is the number operator; t

is the hopping amplitude and U is the Hubbard on-site at-
traction (we take U . 0, with an explicit minus sign in the
Hamiltonian). Notice that, with this notation, the Hamil-
tonian is explicitly particle-hole symmetric, so that m � 0
corresponds to n � 1 (half filling). Despite its simplicity,
an exact solution is still lacking for d . 1, and most of
the known results are limited to weak �U ø t� or strong
6403-1 0031-9007�02�88(12)�126403(4)$20.00
�U ¿ t� coupling, where the BCS and the BE approaches,
respectively, are accurate descriptions. For d . 2, the
ground state of the model (1) is superconducting for all
values of U and all densities. At half filling the super-
conducting and the charge-density-wave order parameters
mix, due to the enlarged symmetry group.

The possible formation of incoherent Cooper pairs in
the pseudogap phase of the cuprates stimulated us to disre-
gard the relatively well understood superconducting phase
of the Hubbard model, by constraining ourselves to solu-
tions without superconducting order. We rather focus on
the physics of incoherent pairing by investigating the nor-
mal phase within the dynamical mean field theory (DMFT)
[4,5]. The DMFT is a nonperturbative approach that ne-
glects the spatial correlations, but fully retains the local
quantum dynamics, and becomes exact in the limit of infi-
nite dimensions. Because of the local nature of the inter-
action in the attractive Hubbard model, we expect that the
physics of local pairing is well described (particularly in
the BCS-BE crossover regime).

The existence of a pairing transition for the normal
phase at quarter filling �n � 0.5� has been reported
in Ref. [6], where the DMFT of the model has been
performed by means of finite temperature quantum
Monte Carlo (QMC) calculations. Such a transition
occurs between a Fermi-liquid metallic phase, and a
non-Fermi-liquid phase constituted by bound electron
pairs with no phase coherence. In the same paper it was
also reported a finite value of the quasiparticle weight
Z � �1 2 ≠S�v��≠v�21 for all values of U, even at
the pairing transition and in the pairing phase. The
relationship between this finite value of Z and the spectral
properties, as well as the density dependence of the
pairing transition, are still open questions that we address
in this paper. We consider the Hubbard model at zero
temperature on an infinite coordination Bethe lattice of
bandwidth W , using the exact diagonalization to solve the
impurity model [7]. This method requires a truncation of
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the conduction bath to a small given number of orbitals
ns 2 1, and allows us to compute, directly at T � 0, Z and
the density of states (DOS) r�v� � 21�p ImG�v�. A
first characterization of the pairing transition may be given
by noting that, on a bipartite lattice, a particle-hole trans-
formation on the down spins ci# ! �21�ic

y
i#, leaving the

up spins unchanged, maps the attractive model with a finite
density n onto a half-filled repulsive model with a finite
magnetization m � n 2 1. The chemical potential be-
comes, accordingly, a magnetic field h � m. In the n � 1
case (half filling) the two models are completely equiva-
lent. This mapping proves useful, since many known
results for the repulsive model and for the Mott-Hubbard
transition can be used to gain insight into the attractive
model. In light of this mapping, the pairing transition may
be viewed as the natural counterpart of the Mott-Hubbard
transition in the presence of an external magnetic field.
Within this analogy, the normal state results that we
present can be regarded as representative of the physics of
the attractive Hubbard model at T . Tc, and eventually
even provide the actual low temperature behavior, if some
mechanism frustrating superconductivity is effective, just
like the paramagnetic solutions of the repulsive model
become relevant if frustration prevents antiferromagnetic
ordering.

The evolution of Z as a function of U for n � 1, n �
0.5, and n � 0.25 is shown in Fig. 1. The results re-
ported here are given by a linear extrapolation in 1�ns

using ns � 8, 10, 12. In the half-filled case, the paring
state (that here coincides with the Mott insulating state) has
always Z � 0, and Z vanishes continuously at the transi-
tion point U�W � Uc2�W � 1.49, as reported in many
previous studies [4,8]. The numerical value agrees very
well with, e.g., the recent numerical renormalization group
results of Ref. [9]. Away from half filling, the metallic so-
lution exists for all values of U , Uc2�n� , Uc2�n � 1�.
In this phase Z is a decreasing function of U, but it stays
finite for all couplings. In particular, the disappearance of
the metallic solution at Uc2 is not associated to a vanishing
Z (see inset of Fig. 1). The pairing phase solution exists
in turn for U . Uc1, with Uc1�n� , Uc2�n�, and it also
has always a finite Z. In the pairing phase Z is an increas-
ing function, converging to the atomic limit value for large
U. In the interval between Uc1�n� and Uc2�n�, the metallic
and pairing solutions coexist. For the half-filled model it
is known that the metallic solution is always energetically
favored in the whole coexistence range, and that the two
solutions become identical at Uc2, where the second-order
pairing transition occurs [10]. Away from half filling,
the actual first-order transition occurs for an intermediate
coupling Uc �Uc1 , Uc , Uc2�, when the energy of the
pairing state becomes lower than the metallic one. The
value of Uc (marked by vertical arrows in Fig. 1) is maxi-
mum in the special half-filling case and decreases with in-
creasing doping. In the extreme dilute limit n ! 0, the
pairing transition coincides with the binding of two elec-
trons, and it occurs for Uc0 � 0.56W . We emphasize that,
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FIG. 1. The quasiparticle weight Z as a function of U for
n � 1, n � 0.5, and n � 0.25. The solid and dashed lines join
the solutions in the Fermi liquid and pairing phase, respectively.
In the half-filled case the latter phase has always Z � 0. The
first-order pairing transition is marked by a vertical arrow (for
n � 1 the transition is second order and coincides with the
vanishing of the metallic solution Uc2). In the inset, the metallic
solutions in the proximity of their disappearance point Uc2 are
shown. The n � 0.25 (dotted line) and the n � 0.5 (dashed
line) solutions have always nonvanishing Z, while the n � 1
solution (solid line) vanishes at Uc2.

in general, Uc has no relationship with the point in which
the Z’s of the two solutions coincide, so that Z has a jump
at the pairing transition.

The above results give strong evidence for the finite-
ness of Z away from half filling. Nevertheless, extrapo-
lating the QMC results of Ref. [6] down to T � 0, one
would obtain, for U close to Uc, values of Z significantly
larger than the exact diagonalization results reported here.
The discrepancy is easily attributed to the relatively large
temperatures used to extrapolate the T � 0 value. Further
QMC calculations performed at lower temperatures indeed
show a significantly smaller value of Z, which is in closer
agreement with our values [11].

The finiteness of Z is a naively surprising result, since
Z is usually interpreted as a sort of order parameter for
the Mott metal-insulator transition at half filling. The
half-filled case is, however, peculiar. In the general n fi 1
case, the mapping onto the half-filled repulsive Hubbard
model at finite magnetization, m fi 0, indicates that in the
Fermi liquid Z should stay finite because the low-energy
(Kondo-like) resonance characterizing the metallic state
cannot have a vanishing width due to the presence of
a finite magnetic field h [12]. Also the Mott-insulating
phase is different in the presence of a magnetic field. When
h � 0 one has a pure Mott insulator with Z � 0, whereas,
when h is large enough to align all the spins, one has a
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completely filled uncorrelated band for, e.g., the up spins
and one recovers the free-electron value Z � 1 [13]. It
is then natural that, at intermediate values of the mag-
netic field, when m fi 1 (i.e., at intermediate fillings in
the attractive Hubbard model), Z assumes finite values. A
further insight can be given by the atomic limit (t � 0�,
that well describes the strong-coupling limit U ¿ t. At
half filling, S�v� diverges as 1�v for v ! 0, leading to
Z � 0. On the other hand, away from half filling, the self-
energy does not diverge at v � 0 and Z is always finite.

We now turn to the pairing transition in the grand ca-
nonical ensemble, where n is not fixed. We can divide the
phase diagram in the U-n plane in four regions, as shown
in Fig. 2: (a) U , Uc0 � 0.56W , in which only the Fermi
liquid solution exists for any density; (b) Uc0 , U , Uc1,
where the metallic solution exists only for densities from
half filling to some intermediate value, and the insulat-
ing one exists only for small densities, and a coexis-
tence region appears; (c) Uc1 , U , Uc2, where the two
solutions coexist at half filling and in an adjacent re-
gion, and the metallic solution disappears at some density;
(d) U . Uc2, where only the insulating solution is present.
In order to reveal a possible phase separation close to the
pairing transition, we computed the density as a function
of the chemical potential for various values of U. Phase
separation occurs as soon as, for some range of densities,
the density is not an increasing function of the chemical
potential. If this is the case, a Maxwell construction de-
termines the phase separation region, i.e., the densities of
the phases in which the system separates. The results are
shown in the schematic phase diagram of Fig. 2. In both
the regions (a) and (d), as well as in the extreme point
U � Uc0, the single phase is always stable with respect to
phase separation. On the other hand, in the intermediate
slices (b) and (c) of the diagram, the first-order phase tran-
sition is always accompanied by phase separation between
two phases at intermediate densities. The system therefore
displays the spatial coexistence of metallic and insulating

FIG. 2. Phase diagram in the U-n plane. The full dots are
the calculated values of Uc1 and Uc2, while the open dots are
the pairing transition points. The thick vertical lines mark cal-
culated phase separation intervals for U�W � 1 and 1.4, while
the shaded area is a guide to the eyes.
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domains at different densities in a finite region of densities
around the pairing transition.

The existence of a pairing transition, its first-order char-
acter, and the finite value of Z could be expected on the
basis of the known results for the repulsive model [13].
Nonetheless, the nature of the pairing phase and the mecha-
nism leading to the disappearance of the Fermi liquid are
less understood. The last part of this work is therefore
devoted to the analysis of the evolution of the DOS as a
function of U for fixed density, concentrating on the for-
mation of the lower and upper Hubbard bands and on the
disappearance of the quasiparticle Kondo resonance going
from the metallic to the insulating solution.

For U � 0, the DOS is obviously the semicircular one,
characteristic of a Bethe lattice, and the chemical potential
moves inside this band to give the desired density. In the
opposite atomic limit, we expect an insulating DOS with
the broad upper and lower Hubbard bands. Since we work
out of half filling, the two bands will have different weight.
The effect of the attraction between the electrons is shown
in Fig. 3 for the case n � 0.75. Starting from small values
of U, the first visible effect of the interaction is a broaden-
ing of the whole spectrum, with the high-energy tails (top
and bottom of the bands) moving away from the chemical
potential. On the other hand, the total weight close to the
Fermi level does not change much increasing U. Further
increasing U, the effect is enhanced and the high-energy
weight starts to separate from the low-energy feature. As
a result, the featureless noninteracting DOS evolves into
a well-structured function, that resembles the well-known
result for n � 1, with three distinct features: a struc-
ture around the Fermi level, and two high-energy features,

FIG. 3. Spectral density r�v� for n � 0.75 and various values
of U�W in the metallic phase (first four panels) and in the
pairing phase (bottom panel).
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analogous to the Hubbard bands. Since we have n , 1,
the upper band has larger weight than the lower. Regions
with significant depletion of spectral weight clearly sepa-
rate the different features. Following the metallic solution
beyond the transition point Uc, a finite spectral weight
at the Fermi level is found for all coupling values up to
Uc2, where the metal abruptly disappears. The breakdown
of the Fermi liquid is not associated with a vanishing width
of the Fermi level resonance, consistently with the re-
sults for the quasiparticle weight Z. The finite Z in the
metallic solution is therefore associated with this quasi-
particle feature at the Fermi level. As reported above, at
U � Uc , Uc2, the metallic solution becomes energeti-
cally unfavored with respect to the pairing state. In that
state the spectral function displays only the broad Hub-
bard bands, and is always gapped (although Z is finite). A
similar behavior is present also for lower densities such as
n � 0.5 and n � 0.25 (not shown), where all the transi-
tions (disappearance of Fermi liquid and first-order pair-
ing transition) move to lower U, and the interval in which
three features coexist is narrower, but clearly present. In
all cases, even if a loss of total spectral weight close to
the Fermi level occurs, this weight never vanishes in the
metallic phase and the transition to the pairing state is first
order.

In conclusion, we have presented a complete charac-
terization of the pairing transition in the normal phase of
the attractive Hubbard model. For all densities n fi 1, the
pairing transition is intrinsically a first-order one, accom-
panied by a region of phase separation between a metallic
and an insulating phase at different densities. The quasi-
particle weight Z is always finite, and takes its minimum
value at the transition point, where it jumps from a lower
metallic value to a higher value in the pairing phase. Even
following the metallic solution in the metastability region
Uc , U # Uc2, Z never vanishes.

An analysis of the spectral function r�v� shows that
the finite Z in the metallic phase is associated with a
quasiparticle peak at the Fermi level. The evolution of
r�v� is quite similar to the half-filled repulsive Hubbard
model. A structure at the Fermi level is found all the
way to the pairing transition, and two broad Hubbard
bands develop and coexist with the Fermi-level feature.
The neglect of superconducting symmetry breaking and
the local nature of the pairing suggest that some care
must be taken in carrying over our results to characterize
the normal phase above Tc, particularly in systems (like
cuprates) where the pairing has a nontrivial momentum
structure. However, the above DMFT analysis provides
interesting indications in two main regards. First of all,
it shows that, for U � W , preformed Cooper pairs and
substantial pseudogap features can be obtained on a local
basis (i.e., involving all momenta) even without invoking
strong critical (i.e., at small q’s) pair fluctuations in the
proximity of a superconducting phase transition. This
can even give rise to a phase of incoherent pairs, which,
126403-4
however, does not seem to be generically observed in the
cuprates. At most one could argue that strongly bound
incoherent pairs are formed near the �6p, 0� and �0, 6p�
points of the Brillouin zone, supporting a two-gap model
for cuprates [14]. A second relevant outcome of DMFT
analysis is the presence of coherent quasiparticles with a
strong mass enhancement at intermediate coupling directly
arising from the pairing interaction and coexisting with
the high-energy pseudogap features. While the Hubbard-
like high-energy features will survive the turning on
of coherent pairing and will be present in the normal
phase above Tc, the persistence of the relatively heavy
quasiparticles above Tc is a more subtle issue. The renor-
malized quasiparticles are expected to survive to super-
conductivity only when Tc is less than their effective
bandwidth, which is of the order ZW . This could leave a
very narrow window around U � W where large pairing-
induced mass enhancement is visible. Accordingly, by
crossing U � W , the superconducting transition will
quickly evolve from a BCS-like instability of a Fermi
liquid (with possibly critical pair fluctuation induced
pseudogap on an energy scale less than ZW) to BE-like
condensation of preformed pairs.
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