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Marginal Scaling Scenario and Analytic Results for a Glassy Compaction Model
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A diffusion-deposition model for glassy dynamics in compacting granular systems is treated by time
scaling and by a method that provides the exact asymptotic (long-time) behavior. The results include
Vogel-Fulcher dependence of rates on density, inverse logarithmic time decay of densities, exponential
distribution of decay times, and broadening of noise spectrum. These are all in broad agreement with
experiments. The main characteristics result from a marginal rescaling in time of the control parameter
(density); this is argued to be generic for glassy systems.
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Glassy dynamics occurs with similar characteristics in
a remarkably diverse range of systems [1]. This Letter
attempts to give reasons for this similarity.

It begins by considering an idealized model of granu-
lar materials, which is perhaps the simplest class of real
systems showing glassy behavior. The model is treated
by approximate scaling and then by asymptotically exact
methods. The behavior is similar to that found in simula-
tions and in the Chicago experiments [2–6] on real granu-
lar systems. Because we expect diverging characteristic
times (while no diverging length has yet been seen in
glassy systems), the scaling procedure rescales time t. The
consequent scaling equation for the control parameter, in
this case the density r, has a particular (marginal) form.
We show at the end of this Letter that this leads directly
to the best known characteristic features of glassy dynam-
ics. We also argue at the end that this marginal form arises
when time scales are excessively sensitive to changes of
the control parameter, as is the case in glassy dynamics in
general, thus arriving at a universal scaling scenario.

All the following characteristics of glassy behavior [1,7]
are shared by super cooled molecular glass-forming liq-
uids, structural glasses, foams, colloids, and even (shaken)
granular systems: (i) extreme slowing of rates with typi-
cally a Vogel-Fulcher dependence on control parameters
(temperature, density, etc.); (ii) slow decay of correlation
functions and of the control parameter itself, often fitted to
stretched exponential or inverse logarithmic time depen-
dence; (iii) associated aging phenomena; (iv) characteris-
tic broadening of noise spectra.

This has raised questions of universality, and it suggests
that, despite obvious differences in fundamental mecha-
nisms, something generic might already be present and dis-
cernible in simple models. Granular materials show all the
standard characteristics when compacting under shaking,
even though thermal aspects play no role [8]. The sim-
plicity of models (e.g., exclusion models) appropriate for
shaken granular systems [9–15] makes them ideal candi-
dates for such an investigation, and we consider one such
model here.

Previous investigations have shown [5,6,16] how a
simple one-dimensional deposition-evaporation model
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(continuum car parking) can yield characteristic behavior.
Even the noise spectrum (obtained through simulations on
the model [5]) agrees well with experimental observations
[4,5].

The model considered here is closely related to the con-
tinuum car parking model and consists of unit sized blocks
performing a random walk on a ring of size L. They only
interact through hard-core potentials and, as soon as a gap
of unit size opens up between two adjacent blocks, an addi-
tional block will be deposited in the gap and the diffusion
will continue (see Fig. 1).

This model allows rearrangement (diffusion) of the
grains to enable another grain to move (deposit). The
model mimics the actual mechanism of rattling within
and escape from/entry into rearranging cages formed
by surrounding grains. Under compaction, typical free
volume elements become smaller, drastically reducing the
probability of finding one big enough to accommodate a
block, and hence lengthening time scales.

A qualitative scaling description of this effect is as fol-
lows. Consider elementary walkers each carrying a gap
of size e � 1 2 r, which is the average free volume per
block. For the formation of a gap of unit size, n � 1�e,
such elementary walkers have to coincide. A typical initial
state has on average one elementary walker on each lattice
site. Since walkers can move a distance of order

p
t in time

t, by t � n2 walkers from n sites around a particular site
can have accumulated there, and do so with an approxi-
mate probability per unit time

�t21�2 exp�2n2�t��njt�n2 � n2n. (1)

It is straightforward to show that this result applies in any
dimension. This rate of unit gap formation is equivalent

L

1

FIG. 1. Diffusion-deposition process on a ring.
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to a characteristic inverse time t21 for deposition/
motion from or into a cage. Equation (1) implies that,
under rescaling of t by a dilatation factor b, n goes to n0

where n0n0

� bnn. This equality can be written in terms
of the free volume density parameter e as the scaling
equation

e0 � e 1 Ae2 lnb 1 . . . . (2)

In this treatment A � 1� lne. However, the exact discus-
sion of the asymptotic behavior obtained below, implies
that the proper form of (2) has A as a constant. In ei-
ther form, the scaling equation has a marginal form, in
which to leading order the parameter does not rescale. This
marginality can also be shown to occur in the continu-
ous car parking model and we argue below that this is a
key feature of all adequate models of glassy behavior, hav-
ing its physical origin in the exceptional slowing in such
systems.

We turn to the full analytic treatment of the model. At
some instant there are n blocks on the ring of size L.
We choose to consider the gaps between adjacent blocks,
Di , i � 1, . . . , n, as the dynamical variables. The vector
Dn � �D1, . . . , Dn� then performs a random walk on the
hypersurface (see Fig. 2)

pn �

(
Dn

É Pn
i�1 Di � L 2 n
0 , Di , 1, i � 1, . . . , n

)
.

To incorporate the hard-core interactions and the deposi-
tion process we impose the following boundary conditions:
pnjDi�0 reflecting (corresponding to two blocks bouncing
off each other) and pnjDi�1 a portal that will transfer the
system to pn11jDi�Di11�0 (corresponding to a gap of unit
size forming and a block being deposited).

In what follows, unless stated otherwise, � means
“asymptotically correct in the large system, high density
limit,” and the quantity r (or equivalently e � 1 2 r)
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FIG. 2. D3�t� tracing out a random walk trajectory on p3,
being reflected once at p3jD3�0 and then passing through the
portal at p3jD1�1.
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will be used as our control parameter. The time evolution
of e�t� is governed by

�e�t� � 2
1

Lt�t�
) � �e�t�	 � 2L21�1�t�t�	 . (3)

Here t�t� is the time between deposition events at time t
(i.e., the total time spent on pn�t�), for the specific realiza-
tion considered. In order to estimate �1�t�t�	 we define
the cross section s�e� as the ratio between the portal area
and the total boundary area [each �n 2 2� dimensional] on
each hypersurface pn. This will allow us to find the proba-
bility of hitting a portal, given that we hit a boundary.
Through direct volume consideration, one obtains, after
some lengthy analysis, the asymptotically exact result

s�e� � exp�1 2 1�e� . (4)

The same analysis tells us that the distances between
boundaries of pLr scale as e. Therefore if we let Dt̄�e�
be the average time it takes for DLr to go between
boundaries, we have Dt̄�e� � ke2, where k is a constant
inversely proportional to the diffusion constant of the
blocks. Define, with a slight abuse of notation, t�e� to
be the time between deposition events at a given density.
Since the portal cross section is very small for high
densities, we expect the random walk to be essentially
ergodic between the deposition events. Therefore we
can get the distribution for t�e� through considering
repeated bouncing off the reflecting boundaries (blocks
colliding) until finally hitting a portal (deposition event).
The probability of hitting a portal on the kth contact with
the boundary is then �1 2 s�k21s, so the probability
distribution for t�e� is

P�t�e� � x� � �1 2 s�e��x�Dt̄�e�21s�e� , (5)

where x is a multiple of Dt̄�e�. In the limit e ! 0, Eq. (5)
can be considered to be a continuous exponential distri-
bution. By increasing L we can, for any fixed density,
have an arbitrary number of essentially independent de-
position events in any finite time interval. From the law
of large numbers we thus know that the e�t� distribution
can be made arbitrarily sharp in the large system limit.
Therefore t�t� � t��e�t�	�. To solve (3) for �e�t�	 we
need to calculate the average deposition rate at time t,
�1�t�t�	 � �1�t����e�t�	���	. This is easily done using (5),

�1�t�t�	 �
e

k�e�t�	3 exp�21��e�t�	� , (6)

which, when inserted into (3), gives the asymptotic
solution

�e�t�	 �
1

ln�et�kL�
�

1
lnt

(7)

for large t. The asymptotic solution (7) is not valid at
densities low enough to be suitable for comparison with
practical simulations. Since the cross section (4) already
becomes small (i.e., ergodicity holds between deposition
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events) at quite moderate densities, we instead compare a
numerical integration of (3) to simulation data (see Fig. 3).

To examine the power spectrum we need to include the
effects of fluctuations. Since ergodicity holds on p, in the
densely packed limit, we can write the master equation for
the probability distribution of r at time t, P�r, t�, as

≠

≠t
P�r, t� �

1
t�r 2 1�L�

P�r 2 1�L, t�

2
1

t�r�
P�r, t� .

This is easily solved by implementing Laplace transform
techniques on the time variable. For the initial condition
r�0� � rI and in the continuum limit the solution is (to
the highest order of L in the exponential)

p�r, t jrI � � t�r�

s
L

2pT2�r, rI �

3 exp

µ
2L

�t 2 T1�r, rI��2

2T2�r,rI �

∂
, (8)

where p is the continuum probability density and
Tn�r, rI � �

Rr

rI
dr0 tn�r0�. In order to keep the density

evolution rate finite in the continuum limit, t has been
rescaled as t ! Lt. Since t�r� diverges strongly as
r ! 1, the approximations used to arrive at (8) break
down, at any finite L, in the dense limit e & 1�

p
L.

However, for large L the average of r is independent of
L, while the variance can be made as small as we please.
So, for large L, matching of (8) to a Gaussian in r gives
the correct distribution. Using the two variable Gaussian
approximations the two-time density correlation function
can be calculated for a system which starts at density rI

and is aged for a time tA from where measurements are
performed:

�dr�tA 1 t�dr�tA�	 �
e

2
I

2L

1
1 1 t�tA

, �t . 0� . (9)

In the last step we have used our particular form of t�r�
and assumed that we are in a region where e � eA � eI ,
but where t�e�, t�eA� ¿ t�eI�. The above result shows
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FIG. 3. Least squares fit, with respect to the constant k in (6),
of the numerical integration of (3), compared to data from a
simulation of the evolving density using parallel updates on a
ring of size L � 10 000.
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that our model exhibits “simple aging” in the sense that
the two-time correlation function is only a function of t�tA.
The density-density response coefficient, corresponding to
perturbing the density at time tA and then measuring the
response in the density at time tA 1 t, is proportional to
(9) (ignoring an additive constant). This gives the simplest
form of the fluctuation dissipation violation investigated in
[17,18]. We now define the (complex) power spectrum for
the aged system as

Sa�v, tA� �
Z atA

0
dt exp�ıvt� �dr�tA 1 t�dr�tA�	 .

By letting E1�z� denote the exponential integral, this can
be written in the scaling form

Sa�v, tA� � tA
e

2
I

L
sa�tAv� ,

sa�x� � eıx �E1�ıx� 2 E1���ıx�a 1 1����� .

Since the rates in our system are of the order of the inverse
aging time [i.e., t�eA� � tA], a fairly large a must be con-
sidered in order to sample the effects of aging. Therefore
there are three asymptotic regimes (see Fig. 4):

1�a # jxj ø 1, sa�x� � ln�a 1 1� 2 �a 2 lna�ıx ,
(10a)

1 ø jxj ø a, sa�x� �
1
x2

2
ı
x

, (10b)

a ø jxj, sa�x� �
sin�ax�

x�a 1 1�
2

ı
x

. (10c)

The reason for the lower cutoff in x is that the values of
v , 1�atA are nonphysical. Further, we know that on
short time scales the system is time translation invariant
and therefore the real part of Sa corresponds to the “ordi-
nary” power spectra in this limit. We naively stretch this
analogy to the whole range of possible v [and note that
the imaginary part of Sa stays close to the real part of Sa

for the longer time scales (see Fig. 4)].
Since our model allows only deposition of blocks

(grains), it corresponds to the limit of very weak tapping
in [5]. Taking this into account a qualitative agreement
can be seen between our analytical results (see Fig. 4)
and the experimental results presented in [5]. Further,

FIG. 4. Log-log plot of the real and imaginary parts of the
power spectrum scaling function sa�x� versus x � vtA for a �
“measuring time”�tA � 200. The asymptotic regions and the
asymptotic behavior [see Eqs. (10)] are indicated.
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assuming that the density increases with the depth we
can interpret this as an increase of the effective aging
time, as measurements are done closer to the bottom of
the container. By doing this we see that the bulk of the
power spectra is moved towards lower frequencies while
the maximum height seems to increase with aging. This
is in full accord with the scaling form of Sa.

We now discuss further the nature of time scaling in
such models and the question of universality. Under rescal-
ing of time �t ! t0 � bt�, the general renormalization
group transformation [19] of a control parameter r, such
as the density (or temperature), can be written as r !

r0 � Rb�r�. If there is a divergence of the characteristic
time scale t at r � r�, then r� is a fixed point of the
transformation. And linearizing about the fixed point us-
ing e � r 2 r� gives, in general,

e0 � lbe 1 O �e2� , (11)

where (from the semigroup property RbRb0 � Rbb 0)
the eigenvalue lb (if nonzero) has to have a standard
power-law dependence on the time dilation factor b, of the
form lb � b1�y, with y . 0. This leads to t � jej2y ,
which is ordinary critical slowing. But the essential
characteristic of glassy behavior in general is that the
slowing of characteristic rates with the control parameter
is excessive, more extreme than with ordinary critical
slowing. Then the control parameter has to change only
marginally to stretch the time scales significantly. That
is the case when, in (11), lb � 1. Then higher order
terms in the expansion in e have to be retained, and (11)
becomes of the marginal form

e0 � e 1 ae11a lnb 1 . . . , a . 1 ,

where the b dependence is again set by the semigroup
property [19]. As was seen earlier, this form, with a � 1,
applies to the diffusion-deposition model (and also the con-
tinuum car parking model, etc.). Eliminating b between
the scaling equations for e and for time gives a general-
ized Vogel-Fulcher form,

t � exp

µ
1

aaea

∂
.

This specific equation is a direct result of the qualitative
“stronger than ordinary critical slowing” essential char-
acteristic of glassy dynamics. It suggests that the com-
mon Vogel-Fulcher form �a � 1� is one of various generic
universal forms distinguished by the value of a. The
second commonest form would then be the exponential
inverse-squared form �a � 2�, which has appeared in a
glassy model with constrained dynamics [20,21].

A second characteristic of glassy systems, including the
models discussed here, and responsible for metastability,
is that the control parameter is one whose mean and local
fluctuations evolve with the slowed internal dynamics. Its
evolution towards the fixed point value then becomes of
the form ~ �lnt�21�a when the generalized Vogel-Fulcher
form applies. This scenario applies, with a � 1, to the
125701-4
analytic treatment of the density evolution of the diffusion-
deposition model [Eq. (7)]. The slow evolution of the con-
trol parameter is in general related to the broadening log
frequency scale of the noise spectrum. This time-scaling
scenario seems equally applicable for “thermal” glasses.
It does not require a diverging length in glasses, nor a real
static equilibrium transition. It does not so far explain
possible/universal power laws in the noise spectrum, nor
the nonuniversal differences which distinguish various
types of “glass.”
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