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The lowest-energy state of spherical clusters made up of single-species charged particles in a three-
dimensional confining potential is investigated by molecular dynamics simulations for a system size
of 5 3 103 to 1.2 3 105. The energy per particle is compared between shell-structured clusters and
spherical finite-bcc lattices with relaxed surfaces. The shell structure in the interior is the lowest-energy
configuration for ion numbers lower than about 104, while for higher ion numbers, an interior with bcc
ordering surrounded by a few shells on the outside has lower energy. The formation of a small bcc lattice
(nucleation) in the shell-structured cluster of 2 3 104 ions is observed.
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Large clusters of laser-cooled ions confined in the
Penning-Malmberg and the Paul traps have provided us
with clear examples of the strongly coupled plasma [1–6].
One of the most remarkable phenomena observed is the
crystallization of ions of one species induced by their
mutual repulsive Coulomb interaction. Since the effect of
traps is equivalent to the existence of the uniform neu-
tralizing background charge and the body-centered cubic
(bcc) lattice is the lowest-energy state of the (infinite) one-
component plasma (OCP) [7], one may expect to find bcc
ordering in the interior of clusters sufficiently large, such
that the influence of the geometry of confinement and
the surface is overcome. The critical cluster size where
the bulk form of ordering appears in the interior may be
compared to the value on the order of 103, for systems
such as clusters of inert-gas atoms, where the force has
shorter range [8].

In experiments, a bcc form of ordering has been ob-
served in the interior of ion clusters containing more than
a few times 105 ions [9,10]. For smaller clusters, shell
structure has been seen for the entire volume, with the
shells parallel to the outer surface, which is defined by the
geometry of confinement [4]. The transition to bcc order
in the interior has been estimated (from one-dimensional
calculations) to occur in systems with more than about 105

ions [1]. Numerical simulations can give a more precise
description on such a transition, but the largest system for
which simulations have been reported was for 2 3 104

ions, which showed no bcc order in the interior [11]. The
purpose of this Letter is to study this behavior for ion
numbers in the range of 5 3 103 to 1.2 3 105.

We consider the one-component plasma confined by the
spherically symmetric parabolic potential. The parabolic
form is common for all ion traps and, though the spherical
symmetry is assumed for simplicity, the results will also
apply to spheroidal clusters with small modifications. The
Hamiltonian is K 1 U with the kinetic energy K and the
potential energy U, which we rewrite as
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giving all distances in units of the Wigner-Seitz radius a
defined by a � �q2�k�1�3.

When charges are regarded as continuum (the fluid ap-
proximation), the lowest-energy state is the homogeneous
distribution up to the radius R � �Nq2�k�1�3 � N1�3a
with the density n � �3�4p� �k�q2� � �3�4p�a3 and U �
Uhomo � �9�10�N5�3�q2�a� (a is the mean distance or the
ion-sphere radius in this approximation). For given con-
figurations, we define the cohesive (correlation or Made-
lung) energy per particle by ucoh � �U 2 Uhomo��
�Nq2�a� and compare ucoh for various structures. When
N � `, ucoh reduces to the values for OCP [7].

At zero temperature, the behavior of the system is de-
termined by U and (1) indicates that our system is charac-
terized only by N . At finite temperatures T , we define the
dimensionless parameter G � q2�kBTa and static proper-
ties are characterized by N and G.

In the fluid approximation, the radius of uniform dis-
tribution oscillates with the frequency vp � �3k�m�1�2 �
�4pq2n�m�1�2. The time 2p�vp characterizes the macro-
scopic evolution of our system. One of the microscopic
characteristic time scales may be the time to traverse a by
thermal velocity a��kBT�m�1�2 � �3G�1�2�2p�vp�.

We perform molecular dynamics simulations employing
the O�N� fast multipole method (FMM) [12]. We recur-
sively divide the system into small cells and compute the
contributions to force the potential from well-separated
cells by the multipole and Taylor expansions, applying
direct computation only to those from nearby cells [13].
The cohesive energy given by FMM is slightly larger than
the exact value obtained by direct computation; uFMM

coh �
ucoh 1 D, where D�.0� is not sensitive to configuration
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and D � �7 6 1� 3 1025 for N � 105. We follow the
dynamics using FMM, monitoring ucoh through uFMM

coh with
the ambiguity of 61 in the fifth digit, and directly com-
pute ucoh for final relaxed states. The temperature is con-
trolled by the Nosé-Hoover thermostats [14]. In order to
keep the homogeneity of the temperature, we attach mul-
tiple thermostats each controlling about 5000 particles at
the same temperature. We anneal the system for a suf-
ficiently long time, 3 3 102�2p�vp� for N � 105 and
longer for smaller systems, and cool the system slowly
enough, reducing the temperature stepwise typically by
10%. The cooling time scale t � G� �G is taken to be
sufficiently longer than that of relaxation for the poten-
tial and kinetic energies at each specified temperature:
t . 6 3 102�2p�vp� for G , 300 and t � �2 10� 3

102�2p�vp � otherwise, total duration and final values of
G being more than 1.2 3 103�2p�vp � and more than
105, respectively. These time scales are much longer than
2p�vp and 2p�3G�1�2�vp .

We start from two kinds of initial conditions: (i) the
uniform random distribution of particles within the sphere
of the radius R and (ii) the spherical cutout of the bcc
lattice (spherical bcc matter). In both cases, initial veloci-
ties are given by the random distribution corresponding to
the temperature specified by G. These two sets of initial
conditions lead to different final zero-temperature states
when the temperature is slowly lowered. The former gives
shell-structured clusters while the latter gives finite bcc lat-
tices with reconstructed surfaces.

When we start from the initial condition (i), we first an-
neal the system at the temperature above the melting point
of OCP (with typical values of G around 100) and then
slowly cool the system. With the decrease of the tempera-
ture, the formation of spherical shells advances from the
periphery to the center. The system sizes of our simula-
tions are N � 5000, 104, 20 288, and 105 and Figs. 1 and 2
show the radial distribution functions and slices including
the center of the sphere in the final state of some examples.
Outer shells are clear and well defined, the radial distribu-
tion function hitting zero between them. The sharpness of
shells decreases with the decrease of the distance from the
center. However, we still have shells near the center though
they are diffuse and cannot be decomposed completely.

For a given N , the final configuration depends on the his-
tory of cooling and the initial conditions [within (i)]. To
check this dependency, we have followed two examples for
N � 5000 and 104 and in other cases, repeated annealing
and cooling. After sufficiently slow cooling, the radial dis-
tribution is very similar especially for the outer part. The
cohesive energy is also similar and the difference in the
fourth leading digit seems to be less than 2: The cohesion
usually becomes stronger by repeated annealing but once
cooled down sufficiently slowly, the cohesive energy does
not change to such an extent. This may indicate that there
exist many local minima of the total potential energy with
similar values for the shell-structured configurations.
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FIG. 1. Shell-structured cluster of 105 charges. Configuration
near the equatorial plane with jzj , 2.06a (a) and radial distri-
bution normalized by average density (b).

The values of the cohesive energy of the shell-structured
spherical systems are shown in Table I and plotted in
Fig. 3. These values can be interpolated as

ucoh � 20.895 03 1 0.0401N21�3 (2)

for 5000 , N , 105 (with coefficients effective up to the
fifth digit in ucoh). We note that the cohesive energy of
shell-structured states is not expected to have well-defined
asymptotic behavior; when N ! `, shell structures may
even lose the stability as a local minima of the total po-
tential energy. For our purpose, it is therefore necessary
to have the values of cohesive energy for large clusters in-
stead of extrapolating from those of smaller clusters.

In the initial state (ii), the spherical bcc matter has rather
high surface energy [1,15]. The initial cohesive energy
depends on the position of the center of the potential well
relative to lattice points. Starting from (ii), we anneal
the system keeping the temperature near but below the
melting point. We then lower the temperature slowly and
obtain the finite spherical bcc lattice with reconstructed
surface. The system sizes of our simulations are N �
4544, 10 464, 20 288, 48 928, and 120 032. An example
of the structures is shown in Fig. 4. We observe that the
125002-2
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FIG. 2. The same as Fig. 1a for the shell-structured cluster
of 20 288 charges. Configuration is shown for particles with
jzj , 2.42a. (As for the circle, see Fig. 5.)

relaxation has occurred only within a few layers at the
surface. The cohesive energy of the spherical bcc matter
with reconstructed surface is shown in Table I and plotted
in Fig. 3. The relaxation near the surface largely enhances
the cohesion [15]. This has not been expected from the
weak cohesion of unrelaxed spherical bcc matter.

When we anneal the spherical bcc matter at higher
temperatures, the reconstruction of the surface advances
inward further. The resultant cohesion of the system,
however, becomes weaker. Thus the final states obtained
above are local minima which are reached starting from
the spherical bcc matter.

In the limit of very large values of N , the cohesive
energy of the spherical bcc matter with a reconstructed
surface may have the form

ucoh � E` 1 EsN
21�3, (3)

where E` � 20.895 929 (the Madelung energy of the bcc
lattice) and the second term expresses the effect of the
surface. When fitted to this form as shown in Fig. 3 by
the solid line, we have Es � 0.0598.

The zero-temperature cohesive energies of the shell-
structured clusters and of finite bcc matters with relaxed

TABLE I. Cohesive energy of shell-structured clusters and finite
bcc lattices with relaxed surfaces. When we have two examples,
ambiguity in the fifth digit is estimated and shown in ( ).

Shell-structured cluster bcc with relaxed surface
N ucoh N ucoh

5000 20.892 68�6� 4544 20.892 32
10 000 20.893 15�1� 10 464 20.893 35
20 288 20.893 59 20 288 20.893 75

100 000 20.894 15 48 928 20.894 10
120 032 20.894 60
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surface are compared in Fig. 3. We observe that, when
the system size exceeds the critical value Nc, stronger co-
hesion is given by finite bcc lattices with relaxed surfaces
rather than shell-structured clusters. The critical system
size is estimated from (2) and (3) as Nc � 1.05 3 104.
We here note that the cohesive energy, especially of shell
structures, could become lower by annealing the system
repeatedly. When we estimate the latter effect by changing
the fourth digit of the cohesive energy of shell structures
by unity, we have

1.1 3 104 , Nc , 1.5 3 104. (4)

The critical size Nc may also be defined for transitions at
low but finite temperatures. Though Nc does not seem to
depend on the temperature when G is larger than a few
hundreds, the temperature effect has not been explored.

In experiments, the shell and the bcc structures have
been observed in clusters of 1.5 3 104 and 2 3 105 ions,
respectively [4,10]. The critical size, however, has not
been determined. We note that the shell-structured cluster
is still a metastable state at a local minimum of the total
potential energy in the domain N . Nc. Therefore it is
not strange that the shell-structured clusters with N . Nc

do not evolve into bcc lattices with relaxed surfaces in our
simulations. The system has to overcome the barrier of the
total potential energy in order to relax to a lower energy
state and, once the system is in the state of higher potential
energy, it takes a very long time for the main part of the
system to be organized into lattices. In addition to this,
clusters of ions are rotating in experiments, and any effects
which disturb the solid rotation, such as collisions with
residual atoms and molecules, may keep the system from
being organized into lattices as a whole. Thus a little larger
critical value might be obtained in experiments starting
from random configurations.

As discussed above, it is not expected that shell struc-
tures go under the structural transition in the process of
cooling even when N . Nc. One may, however, expect
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FIG. 3. Cohesive energy per particle of spherical Coulomb
clusters. Open and filled circles are shell-structured clusters and
finite bcc lattices with relaxed surfaces, respectively, and broken
and solid lines are interpolations.
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FIG. 4. The same as Fig. 1 for a finite bcc lattice of 120 032
charges with reconstructed surface. Configuration (a) is shown
for particles with jzj , 2.19a.

that there is a chance for small bcc lattices to develop in
the clusters of larger sizes.

In Fig. 2, there exists a domain where we have a regular
straight structure rather than planes curved in accordance
with the surface. The structure factor for 48 particles in-
cluded in a sphere centered in this domain is shown in
Fig. 5. We clearly see that the Bragg spots forms the fcc
structure in the wave-number space. We have confirmed
that the spacing between Bragg spots is consistent with the
bcc lattice with the average density of this cluster within
a few percent. This domain thus forms the bcc lattice nu-
cleated from the shell-structured cluster.

To summarize, it is shown that finite bcc lattices with
relaxed surfaces have stronger cohesion relative to shell-
structured clusters when the system size exceeds about 104

in the low-temperature limit. In the shell-structured cluster
of 2 3 104, the nucleation of the bcc lattice is observed.
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FIG. 5. Bragg patterns from particles in the central part of the
shell-structured cluster of 20 288 charges: The particles are in a
sphere centered at �6.06, 0, 0�a shown by the solid line in Fig. 2.
These planes, k ? n��2p�a� � 20.569, 0, 0.569 (from left to
right), n � �20.0764, 20.0643, 0.995�, form three successive
close packed (111) planes in the fcc lattice.
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