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We consider situations where, in a continuous-time dynamical system, a nonchaotic attractor coexists
with a nonattracting chaotic saddle, as in a periodic window. Under the influence of noise, chaos can
arise. We investigate the fundamental dynamical mechanism responsible for the transition and obtain a
general scaling law for the largest Lyapunov exponent. A striking finding is that the topology of the flow
is fundamentally disturbed after the onset of noisy chaos, and we point out that such a disturbance is due
to changes in the number of unstable eigendirections along a continuous trajectory under the influence

of noise.
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The interplay between chaos and noise has been a topic
of interest in nonlinear dynamics and statistical physics
[1-7]. A main question in this area concerns how chaos
can arise under the influence of random noise. The pio-
neering work of Crutchfield et al. [1] established that, in
the common route to chaos via period-doubling bifurca-
tions, noise tends to smooth out the transition and induce
chaos in parameter regimes where there is no chaos other-
wise. The observability and scaling of fractal structures
near the transition to chaos in random maps were ad-
dressed in Ref. [4]. Features of transition to chaos in noisy
dynamical systems, such as intermittency and a smooth be-
havior of the Lyapunov exponents, were also found in the
transition from strange nonchaotic to strange chaotic at-
tractors in quasiperiodically driven systems [8] and in the
bifurcation to chaos with multiple positive Lyapunov ex-
ponents in high-dimensional systems [9]. Recently, it was
demonstrated [6] that the transition is closely related to
the problem of noise-induced synchronization in chaotic
systems [5]. Noise-excited chaos is also an important phe-
nomenon in the dynamics of epidemic outbreaks [7].

The aim of this Letter is to address the characteristic
features of transition to chaos in continuous-time random
dynamical systems. A situation of interest [7] is where
the system possesses a regular attractor, coexisting with a
nonattracting chaotic saddle, as can arise when the deter-
ministic system is in a periodic window, or in a period-
doubling parameter region (not in a window) where the
stable and unstable manifolds of some unstable periodic
orbits can become tangent and then form a homoclinic or
heteroclinic tangle. In the latter case, the presence of small
noise can induce the homoclinic or heteroclinic tangencies
and create a stochastic chaotic saddle [7]. In the absence
of noise, the largest asymptotic Lyapunov exponent of the
system is zero. As the noise is turned on and its amplitude
becomes sufficiently large, there is a nonzero probability
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that a trajectory originally on the attracting set escapes it
and wanders near the coexisting chaotic saddle. In this
case, the largest Lyapunov exponent becomes positive, sig-
nifying chaos for trajectories starting from typical initial
conditions [10]. But what are the dynamical characteris-
tics of the transition?

The principal results of this paper are as follows:
(i) Noise leads to trajectories that move in phase-space
regions with distinct numbers of unstable eigendirections,
i.e., noise induces unstable-dimension variability [11,12].
As a result, the transition is smooth in the sense that the
largest Lyapunov exponent becomes positive continuously
from zero as the noise amplitude is increased. (ii) After
the transition, the topology of the flow is disturbed in a
fundamental way: There is no longer a zero Lyapunov
exponent, indicating that, for noisy chaos, there exists no
neutral direction along which infinitesimal distances are
conserved, in sharp contrast to deterministic chaotic flows
[13]. To be more specific, let D be the noise amplitude and
D, be the critical value of the noise amplitude required
for the onset of chaos [14]. Then, for D > D.., there ex-
ists no zero Lyapunov exponent. However, for D suffi-
ciently larger than D., one Lyapunov exponent becomes
increasingly close to zero. The topological destruction of
the neutral direction of the flow is, therefore, most severe
for D = D.. (iii) Quantitatively, the largest Lyapunov
exponent versus the noise amplitude obeys the following
scaling law, for D = D,:

A~ (D = D)%, o))

with the exponent & = 1 — 2/\17, where 7 and A] are the
lifetime and the largest Lyapunov exponent of the origi-
nal chaotic saddle, measured in units of 7 and 1/T, re-
spectively, and T is the average time between successive
crossings of the chaotic flow through a Poincaré surface of
section. The topological aspect of the transition, which is
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unique for continuous-time flows, and the scaling law (1)
have not been previously observed. An additional feature
of our paper is that, under noise, there can be unstable-
dimension variability even in low-dimensional chaotic sys-
tems possessing at most one positive Lyapunov exponent,
in contrast to the common belief that this type of non-
hyperbolicity should usually occur in high-dimensional
systems [12].

The interplay between noise and dynamics can be visu-
alized by focusing on three-dimensional autonomous flows
and examining a proper Poincaré surface of section trans-
verse to the direction of the flow, as shown schematically
in Fig. 1, where there are a periodic attractor and a coex-
isting, nonattracting chaotic saddle in the phase space. The
circular region surrounding the periodic attractor specifies
the effective range of the influence of noise of amplitude
D, which can be conveniently called the noisy basin of
the attractor. For clarity, the stable and unstable manifolds
of the chaotic saddle are represented by lines, although
they too are fattened by noise. For D < D, there is no
overlap between the stable manifold of the chaotic saddle
and the noisy basin of the periodic attractor, as shown in
Fig. 1(a). In this case, a random initial condition leads to
a trajectory that is confined in the vicinity of the periodic
attractor, although there can be transient chaos initially, in
the sense that the trajectory may move toward the chaotic
saddle along its stable manifold, wander near the saddle
for a finite amount of time, and leave it along its unstable
manifold. For D > D,, a subset of the stable manifold of
the chaotic saddle is located in the noisy basin of the pe-
riodic attractor, as seen in Fig. 1(b). As a result, there is a
nonzero probability that a trajectory near the periodic at-
tractor is kicked out of the noisy basin and moves toward
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FIG. 1. Schematic illustration of the interplay between noise
and dynamics on a Poincaré surface of section: (a) before and
(b) after the transition to noisy chaos.
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the chaotic saddle along its stable manifold. Because of
the nonattracting nature of the saddle, the trajectory can
stay in its vicinity for only a finite amount of time be-
fore leaving along its unstable manifold and then enter the
noisy basin of the periodic attractor again, and so on. The
enlarged noisy attractor, which contains both the periodic
attractor and the chaotic saddle, must be chaotic. This can
be argued by examining the Lyapunov spectrum.

Let A5 =X <Al =0and A <A =0<Aj be
the Lyapunov spectra of the periodic attractor and the
chaotic saddle, respectively, in the absence of noise. Let
A3 < Ay < A; be the Lyapunov spectrum of the noisy at-
tractor. For D < D., the noisy attractor is only a fattened
version of the original periodic attractor. Thus, we have
A= A% (i =1,2,3) [15]. In particular, there is still a
null Lyapunov exponent, despite the presence of noise,
indicating that the topology of the flow is preserved. For
D > D, there is an intermittent hopping of the trajectory
between regions that contain the original periodic attractor
and the chaotic saddle. Let f4 and fg be the fractions
of time, asymptotically, that the trajectory spends in the
corresponding regions. Then, we have

M= fad] + fsAf = fsA] >0,
Ao = fadd + fsAS = fas <O, 2)
Ay = fady + fsAf <O0.

The remarkable feature is that the Lyapunov spectrum of
the noisy attractor now contains no null exponent. Thus,
immediately after the noise amplitude exceeds the criti-
cal value D., the noisy attractor becomes chaotic in the
sense that its largest Lyapunov exponent is positive. This
chaotic attractor is, however, fundamentally different in its
flow topology from any deterministic chaotic attractors in
that it no longer contains a neutral direction. We stress
that this topological disturbance of the flow exists only
for D > D.. For D < D,, the neutral direction of the
flow is well preserved, despite the influence of noise.

At a fundamental level, the destruction of the neutral di-
rection of the flow accompanying the onset of noisy chaos
can be understood by noticing that the noisy chaotic at-
tractor possesses unstable-dimension variability. In par-
ticular, the original periodic attractor contains no unstable
direction, and the chaotic saddle possesses one unstable
dimension. The role of noise, when it is sufficiently large
(D > D.), is to link these two dynamical invariant sets
with distinct unstable dimensions. To see how unstable-
dimension variability destroys the neutral direction, we
examine the local eigenplanes that contain the neutral di-
rection of the flow associated with the periodic attractor
and the chaotic saddle, as shown schematically in Fig. 2.
In the local eigenplane about the periodic attractor, there
is a stable direction and a neutral direction. Let v be the
eigenvector in the neutral direction. In the eigenplane of a
point in the chaotic saddle, there is an unstable direction
and a neutral direction. When a trajectory is driven by
noise from the periodic attractor to the chaotic saddle along
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FIG. 2. Schematic illustration of the destruction of the neutral
direction of the noisy chaotic flow due to unstable-dimension
variability. The local planes about the periodic attractor and a
point in the chaotic saddle do not coincide in general, and these
planes are not in a Poincaré surface of section.

the stable manifold of the saddle, the eigenvector v maps
to v/ (see Fig. 2) and the vector v/ can lie anywhere in the
local eigenplane of the corresponding point in the chaotic
saddle. After an amount of time, the vector will be aligned
in the unstable direction, due to the expanding dynamics
of the chaotic saddle. Distances along the neutral direc-
tion of the original periodic attractor can no longer be
preserved. In general, a neutral vector associated with an
invariant set can no longer be a neutral one, when the tra-
jectory that “carries” the vector moves to another invari-
ant set with more unstable directions. Thus, we see that
unstable-dimension variability plays a fundamental role
in determining the topology of the flow.

Based on the above picture, the scaling law (1) can be
derived, as follows: From Eq. (2), we see that the largest
Lyapunov exponent of the noisy chaotic attractor is pro-
portional to fg, the probability that a trajectory is kicked
out of the noisy basin of the original periodic attractor
and wanders near the chaotic saddle. This probability is
proportional to the natural measure of the stable mani-
fold of the chaotic saddle in the noisy basin of the peri-
odic attractor, which is determined by the dimension of
the stable manifold. For a two-dimensional ball of size €
on the Poincaré surface of section, the natural measure of
the stable manifold [16] is proportional to > = (2)P+/2,
where € is proportional to the area of the ball, D; is given
byD, =2 —1/ (A5 7), and 7 is the lifetime of the chaotic
saddle of the Poincaré map (7 is thus in the unit of 7, the
average time that a typical trajectory crosses the Poincaré
section). From Fig. 1(b), we see that, for D = D, [or
(D — D.) < 1], the area in which the stable manifold of
the chaotic saddle penetrates the noisy basin of the peri-
odic attractor is proportional to (D> — D?). We thus have
fs ~ (D? = DY)P/2 ~ (D — D)'"V/CXD which is the
scaling relation (1).

We now provide numerical support with well-studied
chaotic flows. Our first example is the Rossler system [17]:
dx/dt = —y — z + D&.(p), dy/dt = x + 0.2y +
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D¢y(t), and dz/dt = 02 + z(x — ¢) + D§,(t), where
c is a bifurcation parameter and &, ). are independent
Gaussian random variables of zero mean and unit variance
[18]. We choose ¢ = 5.3 so that the system is in a period-3
window. The set of stochastic differential equations is
integrated by utilizing the standard second-order Milshtein
method [19]. Figure 3(a) shows the first two Lyapunov
exponents of the asymptotic attractor versus the noise
amplitude D, where we identify the critical noise level
for the onset of chaos: D, =~ 10~%>%°. The absence of the
null Lyapunov exponent for D > D, is unequivocal, indi-
cating that the topology of the noisy flow for D > D, is
fundamentally different from that for D < D, or D = 0
(the deterministic case). For D = D., the scaling of the
largest Lyapunov exponent of the noisy chaotic attractor is
shown in Fig. 3(b), which is apparently algebraic. A least-
squares fit between log,yA; and log,,(D — D.) gives the
slope of 0.94 = 0.03. To determine the theoretical slope
a, we use a large number of noiseless transient chaotic
trajectories on the original chaotic saddle to determine A
and 7. We obtain A} =~ 0.35 and 7 =~ 24.1, which gives
a =~ 0.94. We see that there is an excellent agreement
between the theoretical scaling law (1) and numerics.

We next consider the Lorenz system [20]: dx/df =
10(y — x) + D&,(1), dy/dt = yx —y — xz + D&,(1),
and dz/dt = —8/3z + xy + DE&,(t), where vy is the
bifurcation parameter. Choosing y = 92.8 results in a
period-6 window in the Lorenz system. Figure 4(a) shows
the first two Lyapunov exponents of the noisy attractor
versus the noise amplitude D, where a behavior similar
to that in Fig. 3(a) is observed. The transition to noisy
chaos occurs at D, =~ 10~ 1%, where the neutral direction
of the flow is destroyed for D > D.. The scaling of the
largest Lyapunov exponent versus (D — D.) is shown
in Fig. 4(b), where the numerical slope is 0.97 % 0.03.
The theoretical slope is computed to be approximately
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FIG. 3. For the Rossler system: (a) the first two Lyapunov ex-
ponents near the transition to noisy chaos; (b) algebraic scaling
of the largest Lyapunov exponent after the onset of chaos. The
dashed line indicates the theoretical slope.
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FIG. 4. For the Lorenz system: (a) the first two Lyapunov ex-
ponents near the transition to noisy chaos; (b) algebraic scaling
of the largest Lyapunov exponent after the onset of chaos. The
dashed line indicates the theoretical slope.

0.99 (/\‘19 ~ (.59 and 7 = 75.0). Again, there is good
agreement between the numerics and the theoretical
scaling law (1).

In summary, we have uncovered features associated with
noise-induced chaos in dynamical systems described by
differential equations: The transition to chaos is accom-
panied by a destruction of the neutral direction of the flow.
This topological change of the flow is argued to be due to
unstable-dimension variability. We have also obtained a
general scaling law of the largest Lyapunov exponent ver-
sus the noise amplitude, the validity of which is supported
by numerical computations. The problem of noise-induced
chaos is theoretically interesting and practically important
for statistical physics, nonlinear science, and other disci-
plines such as computational biology as well, and we be-
lieve that we have provided some fundamental insights into
the problem which were not noticed previously.
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