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Degree of Polarization in Near Fields of Thermal Sources: Effects of Surface Waves
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We introduce the concept of degree of polarization for electromagnetic near fields. The approach is
based on the generalized Stokes parameters that appear as expansion coefficients of the 3 3 3 coherence
matrix in terms of the Gell-Mann matrices. The formalism is applied to optical near fields of thermally
fluctuating half-space sources with particular interest in fields that are strongly polarized owing to reso-
nant surface plasmons or phonons. This novel method is particularly useful when assessing the full
vectorial characteristics of random evanescent fields, e.g., for near-field spectroscopy and polarization
microscopy.
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The polarization properties of classical and quantized
electromagnetic fields show an extraordinary richness in
their mathematical structure and in the fundamental physi-
cal phenomena, as evidenced, e.g., by the Poincaré-sphere
construction, the Berry-Pancharatnam phase, and the
optical EPR paradox. Normally, the polarization statistics
of light fields are described for well-collimated, uniform
beams in terms of a 2 3 2 equal-time coherence ma-
trix or the Stokes parameters [1]. Besides beams, this
approach applies to radiated wide-angle far fields, and
it has been demonstrated that unpolarized sources may
generate highly polarized far fields [2]. For nonuniform
beams, methods based on the Wigner matrix and the
beam coherence-polarization matrix are employed [3]. It
is known that, in analogy with the correlation-induced
spectral changes [4] and the changes in spatial coherence,
the degree of polarization of a partially coherent, partially
polarized beam may vary on propagation [5]. However,
the two-dimensional techniques are inadequate to describe
the partial polarization of arbitrary fields. In particular,
fluctuating optical near fields, which are characterized by
evanescent waves and which manifestly are not beam-
like, must be represented by the full electromagnetic
cross-spectral tensors [6].

Though frequently regarded as incoherent, the fields
emitted by thermal sources have a certain degree of cor-
relations; indeed, blackbody radiation is a classic example
of a partially coherent, unpolarized field within both the
classical and the quantized theories [6]. The spectral
and spatial-coherence properties of optical near fields pro-
duced by thermal sources occupying an infinite half-space
have recently been shown to exhibit interesting phenomena
[7,8]. For example, the spectrum of the near field differs
from the corresponding source and far-field values. The
near-field (transverse) spatial correlation length may, con-
trary to common belief, be much shorter than the wave-
length, or it may extend over several tens of wavelengths
when resonant surface waves such as surface-plasmon or
surface-phonon polaritons are excited. Related to these
findings, another fundamental quantity of an electromag-
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netic near field is the degree of polarization, which pro-
vides information about the correlations between the three
orthogonal electric-field components in a given point.

On extending the 2 3 2 Stokes formalism to 3 3 3 co-
herence matrices [1,9], we introduce in this Letter the de-
gree of polarization for arbitrary electromagnetic fields and
investigate its properties in optical near fields, in particular
when surface waves contribute strongly to the field. New
results are obtained concerning the vectorial characteris-
tics of thermal near fields that are important in applications
such as near-field imaging and spectroscopy, and polariza-
tion diffraction microscopy.

We consider a thermal source filling the half-space z ,
0 and separated from a vacuum by a sharp boundary in the
plane z � 0. The source, which is assumed to be in local
thermodynamic equilibrium at a uniform temperature T ,
consists of a homogeneous, isotropic, and nonmagnetic
lossy material whose dielectric properties, at frequency v,
are given by the complex dielectric constant e�v�. The
spatial correlations of the Fourier components of a station-
ary thermal current j�r, v�, at points r1 and r2 in the region
z , 0, are described by the fluctuation-dissipation theorem
as [7,8]

� j�
m�r1, v�jn�r2, v0�� �

v

p
e0e00�v�Q�v,T �d�r1 2 r2�

3 dm,nd�v 2 v0� , (1)

where the brackets represent an ensemble average and the
superscript � denotes complex conjugation. In Eq. (1),
e0 is the vacuum permittivity, and e00�v� is the imagi-
nary part of the dielectric constant. The factor Q�v, T � �
h̄v��exp�h̄v�kBT� 2 1� is the thermal energy of a quan-
tum oscillator at temperature T , and h̄ and kB are Planck’s
constant divided by 2p and Boltzmann’s constant, re-
spectively. The Kronecker delta dm,n, with subscripts
�m, n� � �x, y, z�, and the Dirac delta function in space
are consequences of isotropy, homogeneity, and locality,
while the delta function in frequency, consistent with the
Wiener-Khintchine theorem [6], follows from the station-
arity of the current fluctuations.
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The current fluctuations within the half-space z , 0
emit an electromagnetic field that propagates to the vac-
uum side z . 0. We may consider a single frequency com-
ponent of the stationary polychromatic field. The electric
field is calculated from the equation,

Ek�r, v� � im0v
Z

V
Gk,m�r, r0,v�jm�r0, v� d3r 0, (2)

where m0 is the vacuum permeability, and volume V stands
for the half-space z0 , 0. The Green tensor G�r,r0 , v�,
which gives the field components emanating from the vec-
torial point currents, is conveniently expressed as a super-
position of plane waves [7,10]. Refractions and reflections
of the plane waves at the boundary are taken into account
through appropriate Fresnel coefficients. Consequently,
the (nonradiating) evanescent waves resulting from total
internal reflections at the interface are fully incorporated
in the theory. In addition, since the Green tensor is ex-
plicitly equipped with the Fresnel coefficients, all plasmon
effects are also naturally manifested, as they correspond to
the presence of a pole in the transmission coefficient for
p-polarized light.

The elements of the 3 3 3 coherence matrix that en-
tirely specify the state of polarization of an arbitrary elec-
tromagnetic field, at frequency v, can be written as [1,6]

�E�
k �r, v�El�r, v0�� � Fk,l�r, v�d�v 2 v0� , (3)

where Fk,l is a Hermitian, non-negative definite matrix.
The values of its components are obtained by substitut-
ing Eqs. (1) and (2) into Eq. (3). After some algebra, the
off-diagonal elements can be shown to vanish, and each
diagonal element of matrix Fk,l can be expressed as an
infinite integral over the magnitude of the lateral wave
vector. For more details on the calculation, we refer to
Ref. [11], where the full electric cross-spectral density ma-
trix, at points r1 and r2, has been calculated in the same
geometry. The coherence matrix Fk,l is obtained from that
by taking the limit r2 ! r1.

In the two-dimensional coherence-matrix formalism, it
is customary to express the degree of polarization by writ-
ing it with the help of the Stokes parameters. These quan-
tities, which are related to the Poincaré sphere, completely
characterize the polarization state of an electromagnetic
field [1]. The Stokes parameters are the coefficients in the
expansion of the 2 3 2 coherence matrix in terms of the
2 3 2 unit matrix and the Pauli matrices, the generators
of the special unitary symmetry group SU(2). However,
the two-dimensional formalism is not adequate for the de-
scription of the polarization statistics of arbitrary electro-
magnetic waves, such as optical near fields, since three
orthogonal components of the vectorial field are present.
Consequently, the degree of polarization of the near fields
must be extracted directly from the 3 3 3 coherence ma-
trix. In analogy with the two-dimensional case, we expand
the three-dimensional coherence matrix in terms of proper
basis matrices, for which we choose the 3 3 3 unit ma-
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trix and the Gell-Mann matrices, the eight generators of
the SU(3) symmetry group [12]. We write the expansion
in the form [1]

F�r, v� �
1
3

8X
j�0

Lj�r, v�lj , (4)

where l0 is the unit matrix, and lj � j � 1 . . . 8� are the
Gell-Mann matrices. The coefficients Lj�r, v� are inter-
preted as the Stokes parameters, at frequency v, of an ar-
bitrary electromagnetic field at a point specified by r. The
basis matrices are Hermitian, linearly independent, and
trace orthogonal. For them the following equation holds:

tr�ljlk� �

Ω
3, when j � k � 0
2dj,k, otherwise. (5)

On multiplying both sides of Eq. (4) by lk , taking the
trace, and making use of Eq. (5), we can write the Stokes
parameters in the form

L0�r, v� � tr�F�r, v�� ,

Lj�r, v� �
3
2 tr�ljF�r, v��, � j . 0� .

(6)

It should be noted that we could have chosen other
complete sets of 3 3 3 matrices for the basis and then
identified the expansion coefficients as Stokes parame-
ters [13,14]. However, the definitions adopted above
conveniently lead to the first Stokes parameter L0�r, v�
being equal to the spectral density of the field, as well
as the other parameters having physical interpretations
analogous to those in the two-dimensional case.

We write the degree of polarization P of an arbitrary
field in the form

P2�r, v� �
1
3

√
8X

j�1

L2
j �r, v�

! ,
L2

0�r, v� . (7)

By substituting the Stokes parameters from Eq. (6) into
this equation, we find that [15]

P2�r, v� �
3
2

∑
tr�F2�r, v��
tr2�F�r, v��

2
1
3

∏
. (8)

The degree of polarization is invariant under unitary trans-
formations, because only traces of different powers of the
3 3 3 coherence matrix are involved. Moreover, since
F�r, v� is a Hermitian matrix, it can be diagonalized by
a unitary transformation, and we may readily express the
degree of polarization with the eigenvalues of the coher-
ence matrix. By doing so and noting that all eigenvalues
are non-negative, since F�r, v� is non-negative definite,
we see that P is bounded to the interval 0 # P�r, v� # 1.

We remark that Eq. (8), for the degree of polarization
had, in fact, been put forward in the literature already a
couple of decades ago [14,16–18]. However, in those pa-
pers, the emphasis was on identifying appropriate scalar
invariants of the coherence matrix to be employed as mea-
sures for the degree of polarization. Except for Ref. [17],
123902-2
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the connection of the degree of polarization to the Stokes
parameters acquired a somewhat lesser role. We note that
the degree of polarization as defined in Eq. (8) assumes
the value P � 1 of full polarization for fields which are
fully polarized in the two-dimensional formalism as well.
However, fields which are fully unpolarized in the 2D for-
malism are not that in the 3D formalism. This is intuitively
clear, since the oscillations in the two-dimensional field are
restricted to a single plane. Obviously, such a field cannot
be fully unpolarized in the 3D formalism. In the three-
dimensional formalism, the field is fully unpolarized, if
its intensity in the x, y, and z directions is the same and
no correlations exist between any of the three orthogonal
field components. This isotropic and unpolarized field cor-
responds to that of blackbody radiation.

Let us now apply the general formalism to electromag-
netic fields emitted by some thermal half-space sources.
In Fig. 1 we illustrate the degree of polarization as a
function of the distance from the surface at wavelength
l � 620 nm for gold and silver, at l � 500 nm for
lossy glass and tungsten, at l � 400 nm for gold, and at
wavelengths l � 11.36 mm and l � 9.1 mm for silicon
carbide (SiC). We first note that glass does not support
surface plasmons or phonons and, consequently, the
degree of polarization in the near field for glass decays
monotonically within a wavelength and settles down to a
constant value. This indicates that the evanescent waves,
which are strong only within z , l, have a clear effect
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FIG. 1. Behavior of the degree of polarization as a function
of distance z �0 , z , 4l� from the surface for some materi-
als at T � 300 K. Au at l � 620 nm (e � 29.1 1 i1.2) and
at l � 400 nm (e � 21.1 1 i6.5), Ag at l � 620 nm (e �
215.0 1 i1.0), W at l � 500 nm (e � 4.2 1 i18.1), lossy
glass at l � 500 nm (e � 2.25 1 i0.001), and SiC at wave-
lengths l � 11.36 mm (e � 27.6 1 i0.4) and l � 9.1 mm
(e � 1.8 1 i4.0). Dielectric constants are from Ref. [19]. The
symbols 1 (Ag), 3 (Au), and � (SiC) denote the approximate
values of P in the case of strong surface-wave effects, as dis-
cussed in the text.
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on the near-field polarization. It can be shown that very
close to the surface the degree of polarization approaches
the value 1�4, regardless of the material [11].

At the wavelength l � 620 nm, both gold and silver
have a plasmon resonance as their dielectric constants sat-
isfy the relation Re�e� , 21 [20]. Surface plasmons are
confined electromagnetic modes due to collective oscilla-
tions of the free electrons in the metal. The oscillations
propagate along the material surface, but decay exponen-
tially in the direction perpendicular to it. The plasmon
waves are known to be highly polarized in the plane
spanned by their direction of propagation and the surface
normal. Consequently, they strongly polarize the near
field, which indeed is revealed in our analysis. The
near-field degrees of polarization for both gold and silver
have values as high as 0.80 and 0.88 at the distance of
z � 0.2l from the surface, respectively. These values
reflect the strength of the plasmon field in the vicinity
of the gold and silver surface. We can also analytically
obtain approximate values for the degree of polarization in
the case when the surface-plasmon effects are strong [11].
In short, the approximation consists of taking all slowly
varying terms at the plasmon pole value out of the integrals
and noting that the relative values of the diagonal ele-
ments of the coherence matrix are related as Fx,x�r, v� �
Fy,y�r, v� � Fz,z�r, v��2jej. The approximate values
are plotted as symbols 1 and 3 in Fig. 1 for silver
and gold, respectively. Although they do not exactly
match the correct values, they are better the stronger the
plasmon field. The difference between the exact and the
approximate values follows from the fact that the exact
coherence matrix has also an isotropic contribution due to
the skin-layer currents [11]. On the other hand, for gold
at wavelength l � 400 nm for which Re�e� � 21.1 the
plasmon effect is greatly reduced. Similarly, in the case of
tungsten at l � 500 nm, for which Re�e� . 21 and no
surface plasmons exist, the peak in the near field is sub-
stantially smaller. Regarding the abrupt reduction of the
degree of polarization immediately above the surface in
the very near field, we point out that very close to the sur-
face the so-called quasistatic field, which depends on the
distance as 1��kz�3, starts to dominate over the plasmon
or any other effects [11]. Again, the degree of polariza-
tion approaches the value of 1�4 in the limit z ! 0.

Finally, we analyze the near-field polarization of
a sample of SiC at two wavelengths, l � 11.35 and
9.1 mm. At the longer wavelength, SiC supports resonant
collective lattice vibrations known as surface-phonon
polaritons, whereas such a resonance does not exist at the
9.1 mm wavelength. We see that, as for gold, the near
field is more polarized when a surface wave, in this case
the surface phonon, is excited. The approximate value for
the degree of polarization in the case of the strong phonon
effect, calculated in the same way as previously for the
strong plasmon effects, is plotted with the symbol � in
Fig. 1. It fits better to the exact value than the approximate
123902-3
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FIG. 2. The same as Fig. 1, but for the interval 1023l , z ,
1021l.

values for gold and silver, because for SiC the skin-layer
currents are weaker.

Figure 2 illustrates in logarithmic z scale the behav-
ior of the degree of polarization in the very near field,
i.e., in the quasistatic region, for the materials studied
above. We again see that for all materials the polar-
ization degree smoothly approaches the value P � 1�4.
This value can be analytically extracted by approximating
the integrals in the coherence matrix for the case when
the high spatial-frequency components dominate. For the
mathematical details, we again refer to Ref. [11]. In the
quasistatic region, each diagonal element of the coher-
ence matrix turns out to depend on z as 1��kz�3, as is
expected for the intensity of the field in this region. Al-
though the intensities in the x, y, and z directions depend
on the material, their relative values do not. They are re-
lated as Fx,x�r, v� � Fy,y�r, v� � Fz,z�r, v��2, which
directly gives P � 1�4 in Eq. (8). As regards the far-zone
values of the degree of polarization for the different mate-
rials, we note that, if the whole space would be filled with
a thermal material, the radiation in it would be isotropic.
However, the boundary surface breaks the isotropy, and
the way it is broken depends on the materials that consti-
tute the boundary. Thus the far-zone degree of polarization
must be material dependent.

In summary, we have analyzed the polarization prop-
erties of electromagnetic near fields by extending the
concept of the degree of polarization in 2D to three-
dimensional fields. Our formula for the degree of polar-
ization of an arbitrary electromagnetic field is consistent
with the results put forward in the literature, and the nu-
merical values are found to reflect the physical polarization
behavior of near fields when surface waves are excited.
123902-4
Understanding of the polarization properties of optical
near fields should greatly improve if the near-field Stokes
parameters could be measured. For the two-dimensional
fields, characterization of the state of polarization in terms
of the four Stokes parameters is straightforward [1,6,21].
We hope our analysis inspires related studies of arbitrary
electromagnetic fields, and optical near fields in particular.
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