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Spatial-Field Correlation: The Building Block of Mesoscopic Fluctuations
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The absence of self-averaging in mesoscopic systems is a consequence of long-range intensity corre-
lations. Microwave measurements suggest, and diagrammatic calculations confirm, that the correlation
function of the normalized intensity with displacement of the source and detector, DR and Dr , re-
spectively, can be expressed as the sum of three terms, with distinctive spatial dependences. Each term
involves only the sum or the product of the square of the field correlation function, F � F2

E . The leading-
order term is the product, F�DR�F�Dr�; the next term is proportional to the sum, F�DR� 1 F�Dr�; the
third term is proportional to F�DR�F�Dr� 1 �F�DR� 1 F�Dr�� 1 1.
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Short-range correlation in waves transmitted through
random media is manifest in the intensity speckle pat-
tern. The leading contribution, C1, to the cumulant
correlation function C of intensity normalized to its
ensemble average on the output surface of the sample
is given by the square of the field correlation func-
tion, C1 � F2

E. Neglecting internal reflection from the
surface, its dependence upon displacement Dr on the
output surface is given by C1�Dr� � F2

E �Dr� � F�Dr� �
�sinkDr�kDr�2 exp�2Dr��s�, where k is the wave vector
and �s is the scattering mean free path [1]. This term
dominates intensity fluctuations. Defining a correlation
length, dr, as the first zero of C1 gives dr � p�k � l�2.
However, as a result of scattering within the medium, the
intensity is correlated far beyond dr [2–7] so that inten-
sity values in remote speckle spots are not statistically
independent. This gives rise to two additional contri-
butions to C, which can therefore be expressed as C �
C1 1 C2 1 C3 [3,8], and leads to greatly enhanced
mesoscopic fluctuations [9]. The C2 term produces an
enhancement in total transmission fluctuations over that
given by the field factorization approximation by a factor
of L��, where � is the transport mean free path and L
is the sample length [2,7]. The C3 term is the source of
universal conductance fluctuations, which are enhanced
by a factor of �L���2 [9,10]. The magnitude of C1 at
Dr � 0 is unity, whereas the magnitudes of C2 and
C3 are expansions in 1�g with leading terms of order
1�g and 1�g2 [3], respectively, where g � Nl�L is the
dimensionless conductance and N the number of channels.
Since the onset of localization is at g � 1 [11], the two
terms beyond the field factorization approximation for C
reflect the approach to localization.

In this Letter, we use microwave measurements and
diagrammatic calculations to show that each of the con-
tributions to C may be expressed in terms of the square
of the field correlation function with regard to displace-
ments of the source, DR, and detector, Dr. The C1
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term is F�DR�F�Dr�, the C2 term is proportional to
�F�DR� 1 F�Dr��, while the C3 term is proportional
to F�DR�F�Dr� 1 �F�DR� 1 F�Dr�� 1 1. When the
intensity correlation is considered at a shifted frequency,
Dn, the full correlation function remains a sum of three
terms, each being a product of the corresponding terms in
C, thus, Ci � Ai�Dn�Ci�Dr, DR� �i � 1, 2, 3�. Absorp-
tion alters the magnitudes of C2 and C3, but it does not
change the spatial structure of these terms.

Initial measurements of angular intensity correlation,
carried out in the far field of weakly scattering media,
gave C, which was essentially equal to C1 [12,13]. Re-
cently, measurements of the spatial correlation of the field
on the sample surface have yielded the C1 contribution di-
rectly [14]. Measurements of intensity correlation between
points on the sample surface and the interior of the sample
on a scale greater than the wavelength have allowed the ob-
servation of C2 [5]. In addition, measurements have been
made of the frequency dependence of the C1 [15] and C2
terms [16–18] and of the time variation of the C1 [19,20],
C2 [21], and C3 [22] terms in colloidal samples. How-
ever, the variation of C on a subwavelength scale, as well
as the structure of correlation with displacement of both
the source and detector, have not been reported previously.
The present measurements and calculations allow us to dis-
cern the structure of intensity correlation and to relate it to
the correlation of the underlying field.

Measurements are made in a disordered dielectric
sample contained within a reflecting tube. Radiation of
frequency n emitted by a source antenna at �R at one
end of the tube and detected at point �r at the other end
is denoted by In� �r, �R�. We consider the normalized
cumulant correlation function,

C�Dr, DR� � �dIn��r , �R�dIn0� �r 0, �R0����In��r, �R��

3 �In 0��r 0, �R0�� , (1)
where dIn is the deviation of the intensity from its en-
semble average value, Dr � j�r 2 �r 0j and DR � j �R 2 �R0j
© 2002 The American Physical Society 123901-1
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are the displacements across the output and input surfaces,
respectively, and �· · ·� denotes the average over an ensem-
ble of random realizations. The leading contribution to C
obtained by factorizing the fields is [1,2,14,23]

C1�Dr, DR� � j�En� �r, �R�E�
n 0� �r 0, �R0��j2��In� �r, �R��

3 �In 0��r 0, �R0�� . (2)

The samples studied are random mixtures of 1.27-cm-
diameter polystyrene spheres at a volume filling fraction of
0.52. They are contained inside a 100 cm long copper tube
with a diameter of 7.5 cm capped with thin Plexiglas face
plates. Field and intensity spectra are obtained in the fre-
quency range 16.8–17.8 GHz with a step size of 625 kHz
using a vector network analyzer. Measurements are taken
in an ensemble of 690 random samples by rotating the tube
to create new configurations of the spheres after each set of
spectra are taken. Field spectra are obtained in each sample
realization by translating an antenna detector along a line
to each of 50 locations separated by 1.06 mm on the output
surface for each of two fixed antenna sources at the incident
surface, which are separated by DR � 3 6 0.1 cm � d.
Field spectra are also taken by translating the source along
a line for each of two fixed antenna detectors at the output
surface, separated by Dr � d. At the separation d, the
short-range term has largely decayed. The antennas are
aligned perpendicular to the line of translation. Intensity
spectra are obtained by squaring the field spectra.

The spatial variations of C�Dr, 0� and C1�Dr, 0� are
shown in Fig. 1. The C1 contribution is obtained directly
by squaring the field correlation function, shown in the
inset of Fig. 1. Subtracting C1 from the full intensity cor-
relation function gives the difference C 2 C1, shown in
Fig. 2 for a single source �DR � 0� and for two sources
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FIG. 1. Plots of C�Dr , DR � 0� and C1�Dr , DR � 0�, and
theoretical fit to C. Inset: real part of the field correlation
function, FE�Dr�.
123901-2
separated by DR � d. This difference gives the terms be-
yond the field factorization approximation. Measurements
of C�0, DR� and C1�0, DR�, i.e., for a fixed detector and
a scanning source, have also been performed. Within ex-
perimental error, C�Dr, 0� and C�0, DR� were found to be
identical functions of their respective arguments. The same
is true for C1. Similarly, we find that plots of �C 2 C1�
versus DR with Dr � 0 and Dr � d are nearly the same
as those shown in Fig. 2. Thus DR and Dr can be inter-
changed as required by reciprocity.

Measurements of C1�Dr, DR� for DR � 0 and
DR � d are presented in Fig. 3. Within the noise level of
1024, the two functions have the same variation with Dr,
C1�Dr, d� � 2 3 1023C1�Dr, 0�. This numerical factor,
C1�0, d�, is equal to the value of C1�d, 0� within the uncer-
tainty in the value of d. This result, taken together with the
aforementioned symmetry with respect to interchanging
Dr and DR, suggests that C1 can be written as the product
of two identical functions, C1�Dr, DR� � F�DR�F�Dr�.

We now examine �C 2 C1� �Dr, DR�, which is domi-
nated by C2 in our sample. This function is seen in Fig. 2
to fall to nearly one-half its value when either DR or
Dr increase beyond dr when there is no displacement
of the other variable. This shows that C2 is given by
the addition of two equal terms. The comparison of the
short-range variation of C 2 C1 with C1 in Fig. 2 suggests
that the additive form factors are identical to F, so that
the dominant contribution to C 2 C1 is proportional to
F�DR� 1 F�Dr�. This would imply that C2�Dr� approach
a constant value for Dr . dr, whereas the measurement
of �C 2 C1� �Dr, d� is seen in Fig. 2 to fall slightly with
increasing displacement. This could be the consequence of
a slight departure from a quasi-1D geometry at the output
face of the sample. There the average intensity is slightly
larger at the center than at the edges since the wave can
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FIG. 2. Plots of �C 2 C1� �Dr� for DR � 0 and 3 cm, and
C1�Dr� at DR � 0.
123901-2



VOLUME 88, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2002
0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

C
1
(∆r=0,∆R=d) ≈

C
1
(∆r=d,∆R=0) ≈ 2.10−3

∆r (mm)

C
1
(∆r,∆R=d)/C

1
(∆r=0,∆R=d)

C
1
(∆r,∆R=0)

FIG. 3. Comparison of C1�Dr�, normalized by its value at
Dr � 0, for DR � 3 cm and C1�Dr� at DR � 0.

spread beyond the cross section of the tube. Notwithstand-
ing this effect, the experimental results suggest that both
C1 and C2 can be expressed in terms of a single form fac-
tor F�x�, where x stands for either Dr or DR. C1 and C2
contain, respectively, the product and the sum of two form
factors. For the most part of Fig. 2, the correlation func-
tion �C 2 C1� �Dr, d� is seen to lie above the dotted curve,
which is proportional to C1. This suggests a constant con-
tribution to C. For Dr . 30 mm, the correlation function
becomes negative, but here the noise becomes larger than
the signal because of the reduced number of pairs of points
with increasing Dr. Such a long-range correlation for large
values of DR may be part of C3.

The structure of the joint spatial and frequency depen-
dences of C1 and C2 is obtained from measurements of the
correlation functions C1�Dn, Dr� and �C 2 C1� �Dn, Dr�
for DR � 0, shown in Figs. 4a and 4b, respectively. The
semilog representations in Fig. 4 show that, within the lim-
its set by the noise level, Ci have the same frequency
dependence for any Dr, while Ci have the same spatial
dependence for any Dn for i � 1, 2. Thus their spatial
and spectral variations for a single source are given by
Ci�Dn, Dr� � Ai�Dn�Ci�Dr�. The noise level found in
C1 is low compared to that in C2 because the field correla-
tion function, FE, is computed and then squared to obtain
C1, giving a signal to noise ratio which is the square of
that for the field correlation function. The form of the
intensity correlation function suggested by experiment is
borne out in the diagrammatic calculations summarized
below.
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FIG. 4. Semilog representation of the spatial and frequency
dependence of C1 (a) and �C 2 C1� (b) for DR � 0.

The three terms in C may be represented diagrammati-
cally. The diagram corresponding to the C1 term describes
two noninteracting diffusons attached to pairs, GG�, of av-
eraged Green’s functions [7,24]. This diagram factorizes
into a product of two field functions:

�En��r , �R�En 0��r 0, �R0� �
Z

d3r1 d3r2 Gn� �r, �r1�

3 G�
n 0��r 0, �r1�Tnn 0��r1, �r2�

3 Gn� �r2, �R�G�
n 0��r2, �R0� , (3)

where Tnn 0��r1, �r2� denotes the diffusion ladder and integra-
tion is performed over �r1, �r2 inside the tube. For the quasi-
one-dimensional geometry, the diffuson is independent of
its transverse coordinates, whereas the Green’s functions
decay rapidly on a scale of the mean free path. Taking
�R � �R0 and n � n0, we obtain

�En��r , �R�En��r 0, �R�� �

µ
4p

�

∂ Z
d3r1 Gn� �r, �r1�

3 G�
n��r 0, �r1� �In� �r1, �R��

� FE�Dr� , (4)

where In� �r, �R� is the intensity at �r, normalized to its
average value at the output face of the tube. Thus,
C1�Dr, DR� � F2

E�Dr�F2
E�DR� � F�DR�F�Dr�.

The diagrams corresponding to the C2 and C3 terms
describe two incoming and two outgoing diffusons which
interact in the bulk of the medium. In these diagrams,
each pair GG� of external Green’s functions contributes a
spatial form factor FE as in Eq. (4). These give
C � C1 1 C2 1 C3 � A1�Dn, a�F�DR�F�Dr� 1
2
3g

A2�Dn,a� �F�DR� 1 F�Dr��

1
2

15g2
A3�Dn, a� �1 1 F�DR� 1 F�Dr� 1 F�DR�F�Dr�� , (5)
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where g � Ak2
0 l�3pL is the leading order contribution

to the average conductance of the sample with cross sec-
tion A. The coefficients Ai �i � 1, 2, 3� depend on the ab-
sorption coefficient a and the frequency shift Dn. The
structure of Eq. (5) is similar to that of the correlation
in transmission, obtained in the multichannel formalism
[3,4,7]. In the present case, however, all terms are de-
scribed by a single spatial form factor. The field factor-
ization term, A1�Dn � 0, a�, is unity and independent of
absorption by definition, while A2�Dn � 0, a� is given by
[6,24,25]

A2�Dn � 0, a� �
3

16a

∑
sinh2a 2 2a�2 2 cosh2a�

sinh2a

∏
.

(6)

The coefficient A3�a� depends weakly on a and its limit-
ing values are A3�0� � 1, A3�`� � 15�16.

For our samples, g 	 7 and a 	 3 [14]. From the
measurement of �C 2 C1� at Dr � 0, 2

3g A2 � 0.076 with
A2 � 0.87. This is in agreement with Eq. (6) and calcu-
lated corrections due to localization effects [6,18,24–26].
Using the measured C1�Dr� as the functional form F�Dr�,
following Eq. (5) and neglecting C3, we obtain a good fit
of the spatial structure of the intensity correlation function,
as shown in Fig. 1.

These considerations have applications to present efforts
to enhance the capacity of wireless communication by uti-
lizing multiple antennas to detect the multiply scattered
field [27,28]. Antenna separation should be larger than
dr and the number of statistically independent antennas
equals the inverse of the degree of long-range intensity
correlation, 3g�2.

In conclusion, we have found the connection between
the field and intensity correlation functions in the spatial
structure of the three contributions to C. In contrast to the
case of angular correlation [3], intensity correlation can be
expressed in terms of a single form factor obtained from
the field correlation function. We have demonstrated the
multiplicative character of C1 and the additive character of
C2. Calculations predict a mixed character for C3, which
includes a multiplicative, an additive, and a constant term
of equal amplitude. We observe the infinite-range compo-
nent of C3 in the residual correlation when both the source
and detector are displaced by more than the correlation
length. Determining the proper breakup of C into its com-
ponents is of particular importance when considering si-
multaneous variations in space, time, and frequency. Each
term is a product of the corresponding C1, C2, and C3 cor-
relation function in the appropriate variables.
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Rev. B 56, 10 942 (1997).
[22] F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800

(1998).
[23] I. Freund and D. Eliyahu, Phys. Rev. A 45, 6133 (1992).
[24] R. Pnini, in Waves and Imaging through Complex Media,

edited by P. Sebbah (Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2001), pp. 391–412.

[25] R. Pnini and B. Shapiro, Phys. Lett. A 157, 265 (1991).
[26] P. W. Brouwer, Phys. Rev. B 57, 10 526 (1998).
[27] A. L. Moustakas, H. U. Baranger, L. Balents, A. M. Sen-

gupta, and S. H. Simon, Science 287, 287 (2000).
[28] S. H. Simon, A. L. Moustakas, M. Stoytchev, and H. Safar,

Phys. Today 54, No. 9, 34 (2001).
123901-4


