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Mechanical and Chemical Spinodal Instabilities in Finite Quantum Systems

M. Colonna,1 Ph. Chomaz,2 and S. Ayik3

1Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania, Italy
2GANIL (DSM-CEA/IN2P3-CNRS), B.P. 5027, F-14021 Caen cedex, France

3Tennessee Technological University, Cookeville, Tennessee 38505
(Received 30 October 2001; published 6 March 2002)

Self-consistent quantum approaches are used to study the instabilities of finite nuclear systems. The
frequencies of multipole density fluctuations are determined as a function of dilution and temperature
for several isotopes. The spinodal region of the phase diagrams is determined, and it appears that
instabilities are reduced by finite size effects. The role of surface and volume instabilities is discussed.
It is indicated that the important chemical effects associated with mechanical disruption may lead to
isospin fractionation.
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The dynamics of first order phase transitions is often
induced by instabilities against fluctuations of the order
parameter. For instance, mechanical instabilities lead to
liquid-gas phase transitions and chemical instabilities in-
duce spinodal decomposition of binary alloys. In violent
heavy ion collisions, nuclear matter may be pushed inside
the coexistence region of the nuclear liquid-gas phase dia-
gram. Then, the observed abundant fragment formation
may take place through a rapid amplification of spinodal
instabilities. New experimental results pleading in fa-
vor of such a spinodal decomposition have recently been
reported [1,2]. From the theoretical point of view, the
spinodal instabilities in finite systems have been mainly
studied within a semiclassical or hydrodynamical frame-
work [3–7]. However, since the relevant temperatures are
comparable to the shell spacing and the wave numbers of
the unstable modes are of the order of Fermi momentum,
quantum effects are expected to be important, as stressed
in [8,9].

In this Letter, we present a fully quantal investigation of
the spinodal instabilities and related phase diagrams of fi-
nite nuclear systems. We determine frequencies and form
factors of the unstable collective modes of an excited ex-
panded system by linearizing the time-dependent Hartree
Fock (TDHF) equation. We carry out applications for Ca
and Sn isotopes. The quantum nature of the system is re-
sponsible for many dominant features such as the fact that
the first mode to become unstable is the low lying octupole
vibration. Slightly diluted systems are unstable against low
multipole deformations of the surface, which may be asso-
ciated with asymmetric binary or ternary fission processes.
We extend our analysis to charge asymmetric systems and
show the importance of chemical effects in the spinodal
fragmentation process.

In TDHF theory, the evolution of the one-body den-
sity matrix r̃�t� is determined by ih̄≠tr̃�t� � �h�r̃�, r̃�t��,
where h�r̃� � p2�2m 1 U�r̃� is the mean-field Hamilto-
nian with U�r̃� as the self-consistent potential. To inves-
tigate instabilities encountered during the evolution of an
expanding system, one should study the dynamics of the
0031-9007�02�88(12)�122701(4)$20.00
small deviations dr̃�t� around the TDHF trajectory r̃�t�
[10]. It is more convenient to carry out such an inves-
tigation in the “comoving frame” of the system, which
is described by the density matrix, r�t� � Uy�t�r̃�t�U�t�
where U�t� � exp�2 i

h̄ ltQ� with Q as a one-body op-
erator. For example, in our case Q could be a suitable
constraining operator for preparing the system at low den-
sities and l is the associated Lagrange multiplier. Then,
the TDHF equation in the moving frame transforms into

ih̄
≠

≠t
r�t� � �h�t� 2 lQ, r�t�� , (1)

where the mean-field Hamiltonian in the moving frame is
given by h�t� � Uy�t�h�r̃�U�t�. The small density fluc-
tuations dr�t� in the moving frame are determined by the
time-dependent RPA equations,

ih̄
≠

≠t
dr � �h�t� 2 lQ, dr� 1 �dU,r� . (2)

Here we consider the early evolution of instabilities
in the vicinity of an initial state r0 determined by a
constrained Hartree-Fock solution �h�0� 2 lQ, r0� � 0,
where h�0� � h�r0� � h0 is the mean-field Hamiltonian
at the initial state. Then, small density fluctuations are
characterized by the RPA modes rn and the associated
frequencies vn . Incorporating the representation ji�,
which diagonalizes h0 2 lQ and r0 with eigenvalues ei

and occupation numbers ni , the equations for the RPA
functions �ijrn j j� � r

ij
n become

h̄vyrij
n � �ei 2 ej�rij

n 1
X

kl

�nj 2 ni�Vil,kjr
kl
n , (3)

where Vil,kj � �ij≠U�≠rlkj j� denotes the residual inter-
action [10,11]. When the frequency of a mode drops to
zero and then becomes imaginary, the system enters an in-
stability region.

To perform an extensive study of instabilities we may
parametrize the possible densities r0 either by static
Hartree-Fock (HF) calculations constrained by a set of
© 2002 The American Physical Society 122701-1
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collective operators [12] or by using a direct parametriza-
tion of the density matrix. We follow the second approach
by introducing a self-similar scaling of the HF density as
suggested by dynamical simulations.

We solve the HF equation for the ground state
�hHF, rHF� � 0, leading to the single-particle wave func-
tions jwi� and the associated energies ´i. We introduce
the density matrix at a finite temperature T as rHF�T � �
1�	1 1 exp ����hHF 2 ´F�T���T ���
, where ´F �T� is the cor-
responding Fermi level that is tuned in order to get the cor-
rect particle number. We perform a scaling transformation,
R�a�, which inflates the wave functions in radial direction
by a factor a according to �rjR�a� jw� � a21�3�r�ajw�.
We define the density matrix for a hot and diluted sys-
tem by r0�a, T � � R�a�rHF�a2T�Ry�a�. The asso-
ciated constrained Hamiltonian is thus h̄0�a� �
a2R�a�hHFRy�a� so that the constraint can be iden-
tified as 2lQa � h̄0�a� 2 h���r0�a, T����. By construction
���h̄0�a�, r0�a, T ���� � 0, so that they can be diagonalized
simultaneously. The eigenstates of the constrained Hamil-
tonian are given by ji� � R�a� jwi�, and the corresponding
energies and occupation numbers are ei � ´i�a2 and
ni � 1�	1 1 exp ����´i 2 ´F �a2T���a2T ���
, respectively.

We perform the HF calculations in the coordinate repre-
sentation using the Skyrme force SLy4 [13]. We note that
the isospin symmetry is already broken at the HF level.
The particle and hole states are obtained by diagonalizing
the HF Hamiltonian in a large harmonic oscillator repre-
sentation [14], which includes 12 major shells for Ca iso-
topes and 15 for Sn. We apply the scaling and heating
procedures described above to the density matrix, and cal-
culate the residual interaction in a self-consistent manner.
We solve the RPA Eq. (3) by a direct diagonalization using
a discrete two quasiparticle excitation representation [15].

The top part of Fig. 1 shows calculations performed
for 40Ca. Top panels show contour plots of the isoscalar
strength function associated with the isoscalar operator
As

LM �
PA

i�1 rL
i YLM , with multipolarity L � 2 5, as a

function of the dilution parameter a. In the stable do-
main, the energy associated with the dominant isoscalar
strength decreases as dilution becomes larger, and at a criti-
cal dilution it drops to zero. At larger dilution, the system
becomes unstable, and for each multipolarity, one or two
unstable modes appear. This is illustrated in the bottom
panel, where the “energy” of the mode En � 2ih̄vn is
plotted as a function of the dilution.

It is seen that at low dilutions, around a � 1.2, only
the octupole mode becomes unstable. In general, den-
sity fluctuations with odd multipolarity become unstable at
relatively smaller values of dilution than those for even
multipole fluctuations. This is a genuine quantum effect,
due to the fact that the majority of the particles have to
jump only one major shell to produce an odd natural-
parity particle-hole excitation while twice this energy is
required for an even one. In nuclei at normal density this
makes the first 32 a strongly collective low lying state;
122701-2
FIG. 1 (color). Contour plots of the isoscalar strength func-
tions associated with the multipolarity L � 2 5 as a function
of the dilution parameter a and the collective energy of the mode
En � ch̄vn (c � 1 for stable modes, 2i for unstable modes)
for 40Ca (top) and 120Sn (bottom). The strength values are given
in percentage of the EWSR: 2 (yellow), 15 (orange), and 30
(red).

in a diluted system this state is the first to turn unstable.
The second feature is that large multipole deformations are
hardly becoming unstable. This is due to surface and quan-
tum effects that prevent the breakup of such a small sys-
tem into several fragments. As a consequence, the fastest
growth time, tn � h̄�jEnj � 28 fm�c, occurs for L � 2
at the dilution a � 1.8. However, deep inside the instabil-
ity region, the octupole mode is almost as unstable as the
quadrupole mode.

Results of similar calculations performed for 120Sn are
shown in the bottom part of Fig. 1. Also in this case, the
octupole mode becomes unstable first, at a � 1.1. Large
multipoles are more unstable in 120Sn than in 40Ca, since
the system is larger and can afford larger multipole defor-
mations. This is the reason why the smallest growth time
in 120Sn occurs for L � 3.

It is useful to study the behavior of the RPA solution
in the coordinate space, r1

p,n�r� � r1
p,n�r, r�, for protons

and for neutrons separately. Since the unstable modes
have large isoscalar strength, protons and neutrons mostly
move in phase. However, because of the isospin symme-
try breaking induced by the Coulomb force and by the
initial asymmetry of the system considered, neutrons’ and
122701-2
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protons’ oscillations have different amplitude and shape.
Figure 2(a) shows the radial dependence of the form factor
associated with the unstable octupole mode, at the dilution
a � 1.5, for protons (dotted line), neutrons (full line), and
the sum (dashed line), in Sn isotopes. Contour plots of neu-
tron (proton) perturbed densities, r0p,n�r� 1 r1

p,n�r�, are
also shown in Figs. 2(b) and 2(c).

We observe that proton oscillations are mostly located
at the surface of the system, which is a way to mini-
mize the Coulomb repulsion energy. At the same time
neutrons try to follow protons; however, this motion is
strongly affected by the isospin initial asymmetry and the
difference between the neutron and proton orbitals at the
Fermi energy. In fact, in neutron-rich systems, much larger
proton oscillations are observed, that is, a way to form
more symmetric fragments and hence to reduce the sym-
metry energy. The last effect is particularly evident in the
neutron-rich 132Sn for which the neutrons are more difficult
to put in motion. We observe a quite complex structure of
the unstable modes: Volume and surface instabilities are
generally coupled and cannot be easily disentangled, as
well as isoscalar and isovector excitations, since protons
and neutrons do not move in the same way. Figure 3 shows
the correlations between the amplitude of proton fluctua-
tions r1

p �r� and neutron fluctuations r1
n �r�, obtained at a

radial distance r ranging from 0 to the system radius R,
for the octupole mode. The different panels correspond to
the three Sn isotopes considered and to three dilutions, a,
indicated in the figure. The correlations describe closed

FIG. 2 (color). (a) Radial dependence of the form factor as-
sociated with the unstable mode with L � 3, at the dilution
a � 1.5, for protons (dotted line), neutrons (full line), and the
sum (dashed line). The radial distance is scaled by the dilution
parameter a. (b) Contour plots of the neutron perturbed den-
sity. From the surface to the center, the contour lines correspond
to the density values: 0.0037, 0.0075, 0.015, and 0.023 fm23.
For larger density, colors show small density variations (3%).
(c) Same for protons.
122701-3
paths, since r1
p,n�r� starts from zero at r � 0 and goes to

zero again at large distances.
When protons and neutrons fluctuate without chang-

ing the local chemical ratio, one should have r1
p �r� �

r1
n �r�Z�N (full line). An identical motion of the two

fluids should follow the diagonal r1
p �r� � r1

n �r� (dashed
line). In N � Z nuclei [Fig. 3(a)] the motion of protons
and neutrons should be the same (isoscalar excitations);
however, the Coulomb force introduces small differences.
As seen in Fig. 2, in diluted systems (a . 1), we ob-
serve that, in the vicinity of the nuclear surface, density
fluctuations are larger for protons than for neutrons, espe-
cially in the case of neutron-rich unstable isotopes, 120Sn
and 132Sn [see Figs. 3(b) and 3(c)], leading to a reduc-
tion of the asymmetry of the fragments produced at the
surface. In the interior we observe, for these isotopes, an
interesting evolution from r1

p �r� , r1
n �r�Z�N for a � 1

(stable modes) to r1
p �r� . r1

n �r�Z�N for the dilute sys-
tems. Hence we observe a change of the local chemical
ratio, leading to a reduction of the symmetry energy, also
in the interior of the system. This effect may be related to
the isospin fractionation that occurs in unstable asymmet-
ric nuclear matter [16]. The proton migration towards the
large density domains is more frequent than the neutron
migration, which may lead to formation of more symmet-
ric fragments.

We also carry out calculations at finite temperature and
determine the dilutions at which different unstable modes
begin to appear. This allows us to specify the border of

FIG. 3. Correlations between the amplitude of proton and neu-
tron fluctuations, for several dilutions. The full circles cor-
respond to a radial distance 0 , r , 2.4a fm, and the open
circles correspond to 2.4a fm , r , R. The dashed line in-
dicates r1

p � r1
n , the full line corresponds to r1

p � r1
n Z�N .

Results are shown for 100Sn (a), 120Sn (b), and 132Sn (c).
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FIG. 4. Border of the instability region (full line) associated
with L � 3 , for Ca and Sn isotopes. The dashed line connects
the points having the instability growth time t � 100 fm�c. The
dots are associated with t � 50 fm�c.

the instability region in the density-temperature plane for
different unstable modes. Figure 4 shows phase diagrams
for octupole instabilities in Sn and Ca isotopes.

Here, for simplicity, we define the density as r �
r0�a3. The full line indicates the border of the instability
region. The dashed line connects points that are associated
with the instability growth time t � 100 fm�c, and the
dots correspond to situations (if any) with a shorter growth
time t � 50 fm�c. The instability region appears quite
reduced as compared to that of nuclear matter. The limit-
ing temperature for instability to occur is around 6 MeV
for Sn and 4.5 MeV for Ca while it is about 16 MeV in
symmetric nuclear matter. Heavier systems have a larger
instability region than the lighter ones. Moreover, more
asymmetric systems are less unstable. In fact, in spite of
the larger mass, 132Sn is less unstable than 120Sn. Larger
instability growth times are obtained for 132Sn. As seen
from phase diagrams for 36Ca and 40Ca, the region of
instability is reduced also in proton-rich systems. This
behavior is in agreement with nuclear matter calculations,
which indicates that the instability region shrinks in
asymmetric nuclear matter [16].

In conclusion, we have presented a study of the early
development of spinodal instabilities in finite nuclear sys-
tems by employing a quantal RPA approach. Results are
relevant for multifragmentation studies; in fact, dominant
unstable modes determine the onset of the subsequent frag-
mentation of the system that has to be followed using a
full dynamical calculation. We have investigated isospin
effects on instabilities by carrying out calculations for Ca
and Sn isotopes. We find that instabilities are mostly of
122701-4
isoscalar nature, but contain also an important isovector
component in asymmetric matter. Hence the liquid-gas
separation of asymmetric systems is always linked to a
chemical separation inducing a fractional distillation of the
system. The degree of instability in neutron-rich and also
proton-rich nuclei appears reduced as compared to that of
symmetric nuclei of comparable size. The instabilities are
also reduced in small nuclei. Finally we have stressed im-
portant quantum effects, such as the octupolar nature of
the most important instability.
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