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We present a new QCD-event generator for hadron colliders which can calculate one-, two-, and
three-jet cross sections at next-to-leading order accuracy. We study the transverse energy spectrum
of three-jet hadronic events using the k� algorithm. We show that the next-to-leading order correction
significantly reduces the renormalization and factorization scale dependence of the three-jet cross section.
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The latest version of the experiment at the Fermilab col-
lider Tevatron and the future CERN Large Hadron Collider
will provide precise data so that not only inclusive mea-
surements can be used to study the physics of the hadronic
final state. The studies of the event shapes and multijet
event can be important projects.

One of the important theoretical tools in the analysis
of hadronic final states is perturbative quantum chromo-
dynamics (QCD). In order to make quantitative predic-
tions in perturbative QCD, it is essential to perform the
computations (at least) at the next-to-leading order (NLO)
accuracy. In hadron collision the most easily calculated
one- and two-jet cross sections have so far been calculated
at the NLO level [1,2]. At the next-to-leading level some
three-jet observables were calculated by Kilgore and Giele
[3,4]. Futhermore, Trócsányi also calculated the three-jet
cross section in pure gluonic approximation [5]. In this
Letter we present a new NLO event generator for calculat-
ing jet observables in hadron-hadron collision. We com-
pute the three-jet cross sections using the k� algorithm
[6,7] to resolve jets in the final state. With our Monte
Carlo program one can compute the NLO cross section
for any other infrared safe one-, two-, and three-jet ob-
servables. The presented distributions are given simply as
illustration.

In the case of a one-jet inclusive cross section in a
high pT region, the forthcoming experimental data re-
quire the knowledge of the higher order corrections. Re-
cently, progress has been made in calculating the two loop
2 ! 2 matrix elements [8–10]. These matrix elements
are needed to set up a Monte Carlo program for calculating
the next-to-next-to-leading order (NNLO) one- and two-jet
cross sections. However, the three-jet NLO calculation,
comprising the one-loop 2 ! 3 and tree-level 2 ! 4 pro-
cesses, is a necessary first step of this project. A numeri-
cally stable and fast three-jet NLO program can provide
enough hope that it might be possible to develop a numeri-
cally stable Monte Carlo program for calculating one- and
two-jet cross sections at the NNLO level.

In the last few years the theoretical developments made
possible the next-to-leading order calculation for the
three-jet quantities. There are several general methods
available for the cancellation of the infrared divergences
that can be used for setting up a Monte Carlo program
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[11–13]. In computing the NLO correction we use
the dipole formalism of Catani-Seymour [13] that we
modified slightly in order to have better control on the
numerical calculation. The main idea is to cut the phase
space of the dipole subtraction terms as introduced in
Ref. [14]; the details of how to apply this for the case of
hadron-hadron scattering will be given elsewhere.

The advantages of using the dipole method are the fol-
lowing: (i) No approximation is made; (ii) the exact phase
space factorization allows full control over the efficient
generation of the phase space; (iii) neither the use of color
ordered subamplitudes, nor symmetrization, nor partial
fractioning of the matrix elements is required; (iv) Lorentz
invariance is maintained; therefore, the switch between
various frames can be achieved by simply transforming
the momenta; (v) the use of crossing functions is avoided;
(vi) it can be implemented in an actual program in a fully
process independent way.

In this calculation we used the crossing symmetric tree-
and one-loop level amplitudes. The parton subprocess
0 ! ggggg [15], 0 ! qq̄ggg [16], and 0 ! qq̄QQ̄g
[17] and the subprocesses related to these have been com-
puted to one-loop and 0 ! gggggg, 0 ! qq̄gggg, 0 !
qq̄QQ̄gg, 0 ! qq̄QQ̄rr̄ [18–21], and the crossed pro-
cesses have been computed at tree level. The q, Q, and r
quark lines could either be different quark flavors or they
could be the same.

We have checked numerically that in all soft and
collinear regions the difference of the real and subtraction
terms contain only integrable square-root singularities.
Furthermore, we have also checked that our results are
independent of the parameter that controls the volume of
the cut dipole phase space, which ensures that indeed the
same quantity has been subtracted from the real correction
as added to the virtual one.

Our method of implementing the dipole subtraction
terms allows for the construction of a process independent
programming of QCD jet cross sections at the NLO
accuracy. We use the same program structure, with trivial
modifications, to compute one-, two-, and three-jet cross
sections.

In order to check the base structure of the program we
compare our inclusive one-jet NLO result to the predic-
tion of the program JETRAD [1]. In this comparison we
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compare the one-jet inclusive cross section using the k� jet
algorithm and MRSD0

2 parton distribution function [22].
We find good agreement between the two program. The
differences are within the statistical error as Fig. 1 shows.

Historically, only the cone algorithm has been used to
reconstruct the jet at a hadron collider. In the three or
higher jet calculation at the NLO level the cone algorithm
is not suitable because it has a lot of difficulties: an arbi-
trary procedure must be implemented to split and merge
the overlapping cones, and an ad hoc parameter Rsep is
required to accommodate the difference between the jet
definitions at the parton and detector levels. To avoid this
uncertainty we use the kT algorithm which has been devel-
oped by several groups [6,7]. Our implementation is based
on Ref. [6]. The algorithm starts with a list of the particles
and the empty list of the jets.

1. For each particle (pseudoparticle) i in the list, define

di � p2
T ,i . (1)

For each pair �i, j� of momenta �i fi j�, define

dij � min�p2
T ,i , p

2
T ,j�

DR2
ij

D2 , (2)

where DR2
ij � �hi 2 hj�2 1 �fi 2 fj�2 is a square of

the angular separation which is expressed in the term of the
pseudorapidity hi and the azimuth angle fi. D is a free
parameter. The usual choice of this parameter is D � 1.

2. Find the minimum of all the di and dij and label it
dmin.

3. If dmin is dij , remove particles (pseudoparticles) i
and j from the list and replace them with a new, merged
pseudoparticle p�ij� given by the recombination scheme.
In this Letter we use the E recombination scheme which
is defined by the new pseudoparticle as the sum of the two
particles

p�ij� � pi 1 pj . (3)

50 100 150 200 250 300 350 400 450 500
ET [GeV]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

K
(E

T
)

NLOJET++ vs. JETRAD

| | < 0.5
s = (1800 GeV)

2

R = F = 100 GeV
s( R) = 0.1

NLOJET++
JETRAD

FIG. 1. Comparison of the K factors of the one-jet inclusive
cross section defined using the k� jet algorithm and for MRSD0

2

parton densities obtained with Monte Carlo programs JETRAD
and NLOJET++ (this work). The bands indicate the statistical
error of the calculations.
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4. If dmin is di , remove particle (pseudoparticle) i from
the list of particles and add it to the list of jets.

5. If any particles remain, go to step 1. The algorithm
produces a list of jets, each separated by DRij . D.

Once the phase space integrations are carried out, we
write the NLO jet cross section in the following form:

s
njet
AB �

X
a,b

Z
dha dhbfa�A�ha, m2

F�fb�B�hb , m2
F �

3 ŝ
njet
ab �pa , pb , as�m2

R �, m2
R�Q2

H , m2
F�Q2

H� , (4)

where fi�H�h, m
2
F� represents the patron distribution func-

tion of the incoming hadron defined at the factorization
scale mF � xFQH , ha,b is the fraction of the proton mo-
mentum carried by the scattered partons pa,b , QH is the
hard scale that characterizes the parton scattering which
could be ET of the jet, jet mass of the event, etc., and
mR � xRQH is the renormalization scale. QH is usually
set event by event. Of course we can use different hard
scales for defining the renormalization and factorization
scales.

Equation (4) shows that using the dipole method one
may either compute the full cross section at NLO accu-
racy including the convolution with the parton distribution
functions or using the Mellin transformed parton distribu-
tion functions the parton level cross section ŝab can be
calculated as a function of the Mellin parameters [23,24].
This procedure could be useful if we are interested in the
measurement of the parton distribution functions (to avoid
the recalculation of the Monte Carlo integrals after each
step of the fitting iteration).

The three-jet cross sections presented here were calcu-
lated for the Tevatron collider in a proton-antiproton col-
lision at the center of mass energy

p
s � 1800 GeV. We

restrict the pseudorapidity range and the minimum trans-
verse energy of the jets in the laboratory frame to be

24 , hjet , 4, ET . 50 GeV . (5)

We choose the transverse energy of the leading jets

QH � E
�1�
T , (6)

as the hard scattering scale.
In Fig. 2, we plotted the differential cross section in the

terms of the transverse energy of the leading jet convoluted
with the CTEQ5M1 parton distribution functions [25] and
using the two-loop formula for the strong coupling,

as�m� �
as�MZ�
w�m�

µ
1 2

as�MZ�
2p

b1

b0

ln�w�m��
w�m�

∂
, (7)

w�m� � 1 2 b0
as�MZ �

2p
ln

µ
MZ

m

∂
, (8)

where as�MZ � � 0.118 and b0 � �11CA 2 4TRNf��3,
b1 � �17C2

A 2 6CFTRNf 2 10CATRNf ��3, with Nf � 5
flavors. For the leading order results we used the CTEQ5L
distributions and the one-loop as [as�MZ � � 0.127 and
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FIG. 2. The perturbative prediction for the three-jet differential
cross section in the term of the transverse energy of the leading
jet at Born level (light gray band) and next-to-leading order (dark
gray band). The bands indicate the theoretical uncertainty due
to the variation of the renormalization and factorization scales
xR,F between 0.5 and 2. The solid line is the NLO result for
the xR � xF � 1 choice of the scales. The inset shows the K
factor over the same range as the main figure.

b1 � 0 in Eq. (7)]. In Fig. 2 the theoretical uncertainty
of the three-jet cross section is shown. Over the wide
range of the value the renormalization and factorization
scale �0.5 , xR,F , 2� this uncertainty in the next-to-
leading order result is much smaller than in the Born level
calculation.

The inset in Fig. 2 shows the K factor (ratio of the
three-jet cross section at NLO to that at LO accuracy),
indicating the relative size of the correction. We can see
the size of the NLO correction is between 10% and 25%
for smaller values of the transverse energy and at the end
of the spectra the size of the correction is almost zero. The
error bars indicate the statistical error of the Monte Carlo
calculation. Because of the strong logarithmic behavior
of the cross section the Monte Carlo calculation is very
sensitive to the “missed binning” (when a huge positive
weight comes from the real term and the corresponding
huge negative weight from the subtraction term are filled
in different histogram bins).

In Fig. 3 we study the scale dependences of the three-jet
cross section. The strong dependence on the renormaliza-
tion scale observed at LO is significantly reduced. The
factorization scale dependence is not significant at NLO
and does not change much. Setting the two scales equal,
mR � mF � m, we can observe a wide plato peaking
around xR � xF � 0.7.

In Fig. 4 we study the dependence of the differential
cross section on parameter D. We plotted the ratios of the
cross section

RD�E�1�
T � �

ds
3jet
pp̄ �E�1�

T ; D�

dE
�1�
T

¡
ds

3jet
pp̄ �E�1�

T ; 1�

dE
�1�
T

(9)
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FIG. 3. The dependence of the three-jet cross section s3jet on
the renormalization and factorization scales.

for three different values of the parameter D �D �
0.5, 1.5, 2�. The parameter D controls the angular separa-
tion in the jet algorithm procedure in Eq. (2). Changing
this parameter we expect more resolved jets (more
three-jet events) with high transverse energy and less
recombination for smaller values of D and vice versa.
This behavior can be clearly observed in Fig. 4.
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FIG. 4. The dependence of the three-jet differential cross sec-
tion on the parameter D. The RD means the ratio of the differ-
ential cross sections for a given D and for D � 1. The upper
panel shows the Born level result and the lower panel shows the
NLO prediction. The error bars indicate the statistical error of
the Monte Carlo calculation.
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In this Letter we presented a NLO computation of the
three-jet cross section defined with the k� clustering al-
gorithm in a hadron-hadron collision. Our results were
obtained using a partonic Monte Carlo program that is
suitable for implementing any detector cuts. We found
that the NLO correction is under 30% in the case of a dif-
ferential cross section but the K factor is sensitive to the
allowed kinematic region. We demonstrated that the NLO
corrections reduce the scale dependence significantly. We
also presented how the differential cross section depends
on the angular separation parameter D used to define the
jet. The same program can be used for computing the
QCD radiative corrections to the (differential) cross sec-
tion of any kind of one-, two-, or three-jet cross sections
or event-shape distribution in hadron-hadron collision. We
compared the two-jet results obtained by our program to
previous results and found agreement.

The computer program implementation of this process
is part of the NLOJET++ library. This is a C11 library
for calculating NLO jet cross sections in e1e2 annihila-
tion, deeply inelestic scattering, and in hardon-hadron col-
lision. Although the core part of the program is written in
C11 the user part could be defined either in C11 or in
FORTRAN [26].
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