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Seven manifolds of G2 holonomy provide a bridge between M-theory and string theory, via Kaluza-
Klein reduction to Calabi-Yau six manifolds. We find first-order equations for a new family of G2

metrics �7, with S3 3 S3 principal orbits. These are related at weak string coupling to the resolved
conifold, paralleling earlier examples �7 that are related to the deformed conifold, allowing a deeper
study of topology change and mirror symmetry in M-theory. The �7 metrics’ nontrivial parameter
characterizes the squashing of an S3 bolt, which limits to S2 at weak coupling. In general the �7 metrics
are asymptotically locally conical, with a nowhere-singular circle action.
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Calabi-Yau manifolds, both compact and noncompact,
singular and nonsingular, have long been studied because
of their significance for string theory, since they provide a
way of obtaining N � 1 supersymmetry in four dimen-
sions. The principal noncompact example is the singular
conifold, and its smoothed-out versions, namely, the re-
solved conifold and the deformed conifold [1]. The singu-
lar apex of the cone over T1,1 � �S3 3 S3��S1 is blown
up to a smooth 2-sphere in the former, and to a smooth
3-sphere in the latter. These minimal (calibrated) surfaces
are supersymmetric cycles over which D-branes may be
wrapped. If one considers a sequence of smooth models
in which the cycles shrink to zero, one obtains enhanced
gauge symmetry at the conifold point, the resolved and
deformed conifolds describing different regimes of dual
strongly coupled field theories [2,3]. Studying this process
has led to an understanding of topology change in quantum
gravity [4,5].

With the advent of M-theory, it has become important
to consider the lifts of these six manifolds with holonomy
SU(3) to seven dimensions and holonomy G2 [2,3,6,7],
in order to set the four-dimensional N � 1 theories in
an M-theory context. The seven-dimensional and six-
dimensional manifolds are related by Kaluza-Klein reduc-
tion on a circle, whose variable length R is related to the
coupling constant g of type IIA string theory by R ~ g2�3.
Thus we seek asymptotically locally conical (ALC) G2

manifolds, for which the size R of the circle tends to a
constant at infinity. In the case that R is everywhere con-
stant, and the associated Kaluza-Klein vector field van-
ishes, the six-dimensional manifold is an exact Calabi-Yau
space. If R varies, it will be an approximate Calabi-Yau
space. This approximation will be good everywhere if the
coupling constant g, or, equivalently, the radius R, never
vanishes and is slowly varying. One may show on general
grounds that it is never larger than its value at infinity.

Since the principal orbits of the smoothed-out conifold
are T1,1, it follows that the principal orbits of the associated
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seven-dimensional G2 metrics will be a U(1) bundle over
T 1,1, which is in fact S3 3 S3. Very few examples of
cohomogeneity one G2 metrics can arise [8], and in fact
the only explicitly known examples have principal orbits
that are ��3, the flag manifold SU�3���U�1� 3 U�1��, and
S3 3 S3. Asymptotically conical (AC) metrics are known
for all three cases [9,10], but only the S3 3 S3 case has
enough freedom to permit ALC metrics of cohomogeneity
one to arise.

In previous work [11], we presented complete nonsin-
gular G2 metrics, which we denoted by �7, for which the
coupling constant varied in such a finite positive interval.
The associated Calabi-Yau space is the Ricci-flat Kähler
metric on a complex line bundle over S2 3 S2 [12,13].
Other work has provided G2 metrics �7 associated with
the deformed conifold Calabi-Yau space [14–16]. How-
ever, in this case the radius R vanishes on an S3 supersym-
metric (calibrated) cycle in the interior. The purpose of this
present Letter is to extend the picture by providing a new
class of complete nonsingular G2 metrics, which we de-
note by �7, whose associated Calabi-Yau manifold is the
resolved conifold. In this case, as in the �7 metrics, the
coupling constant never vanishes. The new metrics pro-
vide a unifying link between the deformed and resolved
conifolds, via strong coupling and M-theory.

The metrics are invariant under the action of SU�2� 3

SU�2�, with left-invariant 1-forms si and S1. The metric
Ansatz is

ds2
7 � dt2 1 a2��S1 1 gs1�2 1 �S2 1 gs2�2�

1 b2�s2
1 1 s2

2� 1 c2�S3 1 g3s3�2 1 f2s2
3 ,
(1)

where a, b, c, f, g, and g3 are functions only of the
radial variable t. If we write si in terms of Euler angles,
with s1 1 is2 � e2ic�du 1 i sinudf�, s3 � dc 1

cosudf, and similar expressions using tilded Euler
angles for Si, then the M-theory circle is generated by
c ! c 1 k, c̃ ! c̃ 1 k, where k is a constant. This
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U(1) diagonal subgroup of the right translations is gen-
erated by the Killing vector K � ≠�≠c 1 ≠�≠c̃. [The
metric Ansatz (1) is a specialization of a nine-function
Ansatz introduced in [16], in which the metric functions
for the i � 1 and i � 2 directions in the two SU(2)
groups are set equal. The diagonal U(1) subgroup of the
SU(2) right translations becomes an isometry, as is needed
for Kaluza-Klein reduction, under this specialization.]
The orbits of SU�2� 3 SU�2� are generically six dimen-
sional. In our solutions, the orbits collapse in the interior
to a 3-sphere, which in general has a squashed rather
than a round SU(2)-invariant metric. The degenerate
orbit is known as a bolt; it is a minimal surface and a
supersymmetric (associative) 3-cycle.

The metric will have G2 holonomy, and thus will also
be Ricci flat, if it admits a closed and coclosed associative
3-form (see, for example, [9,17,18]; for a recent use of this
method, see, for example, [15]). In our case we take

F�3� � e0e3e6 1 e1e2e6 2 e4e5e6 1 e0e1e4

1 e0e2e5 2 e1e3e5 1 e2e3e4, (2)

where the vielbein is given by e0 � dt, e1 � a�S1 1 gs1�,
e2 � a�S2 1 gs2�, e3 � c�S2 1 g3s2�, e4 � bs1,
e5 � bs2, and e6 � fs3. The closure and coclosure
imply the algebraic constraints

g � 2
af
2bc

, g3 � 21 1 2g2, (3)

together with the first-order equations

�a � 2
c
2a

1
a5f2

8b4c3 ,

�b � 2
c

2b
2

a2�a2 2 3c2�f2

8b3c3 ,

�c � 21 1
c2

2a2 1
c2

2b2 2
3a2f2

8b4 ,

(4)

�f � 2
a4f3

4b4c3 .

Using the closure and coclosure conditions has reduced
the Einstein equations, which are of second order and ex-
tremely complicated, to a manageable first-order set in-
volving just the four functions a, b, c, and f. One can
check that the equations are a consistent truncation of the
second-order Einstein equations for the more general nine-
function Ansatz that was given in [16]. It should be em-
phasized that although the equations here have reduced to
a four-function first-order system, the Ansatz is inequiva-
lent to the four-function Ansatz introduced in [15]. In par-
ticular, the metric Ansatz in [15] admits a Z2 symmetry
under which the si and Si are interchanged and the asso-
ciative 3-form changes sign, while our metric Ansatz (1)
does not have this symmetry. (We understand that Gukov,
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Saraikin, and Volovitch are also considering Ansätze that
break the Z2 symmetry [19].)

We can find a regular series expansion for the situation
where both a and c go to zero at short distance. Substi-
tuting the Taylor expansions for the four functions a, b, c,
and f into (4), we find

a �
t
2

2
�q2 1 2�t3

288

2
�31q4 2 29q2 2 74�t5

69 120
1 . . . ,

b � 1 2
�q2 2 2�t2

16

2
�11q4 2 21q2 1 13�t4

1152
1 . . . , (5)

c � 2
t

2
2

�5q2 2 8�t3

288

2
�157q4 2 353q2 1 232�t5

34 560
1 . . . ,

f � q 1
q3t2

16
1

q3�11q2 2 14�t4

1152
1 . . . ,

where, without loss of generality, we have set the scale
size so that b � 1 on the S3 bolt at t � 0. The parame-
ter q is free and characterizes the squashing of the S3

bolt along its U(1) fibers over the unit S2. By studying
the equations numerically, using the short-distance Tay-
lor expansion to set initial data just outside the bolt, we
find that there is a regular AC solution when q � 1 and
there are regular ALC solutions for any q in the inter-
val 0 , q , 1. In fact, the AC solution at q � 1 is the
well-known G2 metric on the spin bundle of S3, found in
[9,10]. [One can easily derive this analytically from (4),
by noting that it corresponds to the consistent truncation
c � 2a, f � b.] The ALC solutions with the nontriv-
ial parameter 0 , q , 1 are new, and we denote them by
�7. They exhibit the unusual phenomenon of admitting
a supersymmetric associative 3-manifold (the bolt) that is
not Einstein. The metric function f tends to a constant at
infinity, while the remaining functions a, b, and c grow
linearly with t; in fact a, b, and c satisfy the first-order
equations governing the Ricci-flat Kähler resolved coni-
fold asymptotically at large distance. One can see from
(1) that the U(1) Killing vector K � ≠�≠c 1 ≠�≠c̃ has
length given by jKj2 � f2 1 c2�1 1 g3�2, and so it fol-
lows that its length is nowhere infinite or zero. It ranges
from a minimum value jKj � q at short distance to the
asymptotic value jKj � f` at infinity.

It may well be that the system (4) is completely inte-
grable, although we have not yet succeeded in finding the
general solution to the first-order equations. (By contrast,
it is expected that the second-order Einstein equations for
Ricci flatness are of the type that would give rise to chaotic
121602-2
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behavior [20].) In a somewhat analogous situation in eight
dimensions, we did find the general solution to the first-
order equations for an Ansatz for ALC metrics of Spin(7)
holonomy [21]. In that case, the first-order equations could
121602-3
be reduced to an autonomous third-order equation, whose
general solution could be given in terms of hypergeomet-
ric functions. In the present case, we can again reduce the
first-order equations to an autonomous third-order equa-
tion for G � g2:
��26G2 1 2G�G02 2 4�7G3 2 2G2�G0 1 8G3 2 32G4�G000 1

��3G 1 1� �G0�3 1 6�14G2 2 3G�G02 2 4�9G2 2 31G3�G0 1 8G3 2 32G4�G00 1

�6�3G2 2 G�G0 2 12G2 1 32G3�G002 1 2�3G 1 1�G04 2 20�G 2 6G2�G03 2

8�7G2 2 29G3�G02 2 16�G3 1 4G4�G0 � 0 , (6)

with A � c2�a2 � 1 1 G0��2G�, c2�b2 � �A0 1 2A2 2 2A���G 1 3GA 2 A�, and abc � er. The primes denote
derivatives with respect to the new radial variable r, defined by dt � 2cdr. We have found the following new explicit
solution:

ds2 � h21�3dr2 1
1
6 r2h21�3

∑µ
S1 1

k
r

s1

∂2

1

µ
S2 1

k
r

s2

∂2∏

1
1
9 r2h21�3

∑
S3 1

µ
21 1

2k2

r2

∂
s3

∏2

1
1
6 r2h2�3�s2

1 1 s2
2� 1

4
9 k2h2�3s2

3 , (7)
where h � 1 2 9k2��2r2�. Unlike the smooth �7 metrics
that we have found numerically, (7) has a curvature singu-
larity at r2 � 9k2�2.

It is useful to summarize some known results for G2
metrics with S3 3 S3 principal orbits —see Table I.

We are including three families of complete nonsingular
solutions here, each of which has a nontrivial parameter.
At one end of the parameter range the metric is asymptoti-
cally conical. For the �7 and �7 cases, this AC metric is
precisely the one found in [9,10], on the spin bundle of
S3. Since the bundle is trivial, we are denoting this AC
metric simply by �4 3 S3. In the case of the �7 metrics
[11], the limiting AC member of the family approaches
the form of the AC metric of [9,10] at large distance, but
is quite different at short distance, since it instead has the
topology of an �2 bundle over T1,1. For the �7 metrics,
and our new �7 metrics, the nontrivial parameter in the
metrics characterizes the degree of squashing of the T1,1

or S3 bolt, respectively, as denoted by the subscripts q on
T 1,1

q and S3
q in Table I. By contrast, for the �7 metrics

the S3 bolt is always round (denoted by the subscript “1”
on S3

1 ), and the nontrivial parameter instead characterizes
“velocities” of the metric functions as one moves outwards
from the bolt [16]. (An explicit solution for one specific
value of the nontrivial parameter was obtained in [15].)

As the nontrivial parameter in the ALC metric is re-
duced from its AC limiting value, a circle “splits off” and
stabilizes its length when one moves out sufficiently far.
The geometry is that of a twisted circle bundle over a six-
dimensional AC metric. At the lower limit of the parame-
ter range the radius of the circle at infinity becomes van-
ishingly small. If one performs an appropriate counterbal-
ancing rescaling of the circle coordinate, the Kaluza-Klein
vector describing the twist vanishes in the limit and one
obtains the Gromov-Hausdorff limit which is just the di-
rect product of S1 times a Ricci-flat Calabi-Yau six met-
ric. Thus the Gromov-Hausdorff limit may be identified
with the weak-coupling limit in this case. These metrics
are listed in the second column of Table I. The metric
� 5 �S2 3 S2� denotes the Ricci-flat Kähler metric on the
complex line bundle over S2 3 S2 that was constructed in
[12,13].

The �7 and �7 metrics provide a seven-dimensional link
between the six-dimensional deformed and resolved coni-
folds. This can be seen from the fact that both the �7 and
�7 families of metrics are encompassed by the Ansatz (1).
They satisfy two different systems of first-order equations
that are each consistent truncations of the same system of
six second-order Ricci-flat equations. Each of the �7 and
�7 families has a continuous nontrivial modulus parame-
ter, with each family having the same AC metric at one end
of the parameter range, while at the other end of the range
the �7 and �7 metrics approach S1 times the deformed
conifold and the resolved conifold, respectively. This im-
plies that the two weakly coupled IIA string theory back-
grounds using the deformed and resolved conifolds are
related via strong coupling and eleven dimensions. [Re-
cently, a metric Ansatz more general than (1), with six
functions, has been considered, and first-order equations
TABLE I. The three families of G2 solutions.

G2 metric Calabi-Yau Bolt AC limit SUSY cycle? �2 sym?

�7 Deformed conifold S3
1 �4 3 S3 Yes Yes

�7 � 5 �S2 3 S2� T 1,1
q ��4 3 S3 No Yes

�7 Resolved conifold S3
q �4 3 S3 Yes No
121602-3
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for G2 holonomy have been derived [22]. These comprise
five first-order equations and one algebraic constraint, and
they encompass both the equations (3),(4) obtained here
and those obtained previously in [14,15]. The system in
[22] thus provides a unified description, entirely within the
class of G2 metrics, of the resolved and deformed conifolds
as weak-coupling limits.]

An important issue for future work is the phenomeno-
logically central question of chiral fermions localized at
isolated singularities [23–25]. Physically, these can arise
in M-theory from massless states associated to membranes
wrapped around vanishing cycles. Mathematically, they
correspond to solutions of the massless Dirac equation in
the M-theory background. The process of localization is
as yet imperfectly understood. What is needed is explicit
metrics permitting explicit calculations. Our metrics are
certainly sufficiently simple for this purpose. What re-
quires further investigation is whether one can model the
appropriate codimension seven singularities using them.
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