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Excitation Spectrum of a Bose-Einstein Condensate
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We report a measurement of the excitation spectrum v�k� and the static structure factor S�k� of
a Bose-Einstein condensate. The excitation spectrum displays a linear phonon regime, as well as a
parabolic single-particle regime. The linear regime provides an upper limit for the superfluid critical
velocity, by the Landau criterion. The excitation spectrum agrees well with the Bogoliubov spectrum in
the local density approximation, even close to the long-wavelength limit of the region of applicability.
Feynman’s relation between v�k� and S�k� is verified, within an overall constant.
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The excitation spectrum v�k� of superfluid 4He gives
important insights into this superfluid [1]. v�k� places an
upper bound on the superfluid critical velocity. Further-
more, it indicates the types of excitations which occur in
the superfluid, and reflects the superfluid’s density corre-
lations. The excitation spectrum of a Bose-Einstein con-
densate should give similar insight into this system.

The excitation spectrum gives the energy h̄v�k� of each
excitation, as a function of its wave vector k. For excita-
tions with wavelengths 2p�k which are comparable to the
radius of the condensate, v�k� is characterized by discrete
shape-dependent oscillatory modes [2,3]. For wavelengths
much shorter than the radius of the condensate in the di-
rection of �k, v�k� becomes an essentially continuous func-
tion of k, which characterizes the intrinsic bulk properties
of the condensate [4]. In this work, “excitation spectrum”
refers to this bulk regime. We report the first measurement
of the k dependence of the excitation spectrum.

Previously, isolated points on v�k� and their dependence
on the chemical potential were measured [5–8].

By definition, v�k� is the average frequency of the dy-
namic structure factor [1] S�k, v�, which gives the re-
sponse of the excitation process. Integrating S�k, v� over
v gives the static structure factor S�k�, which is the Fourier
transform of the density correlation function, giving the
magnitude of the density fluctuations in the fluid [9], at
wavelength 2p�k. In general, the f-sum rule [1] yields
Feynman’s relation [10]

S�k� � �h̄k2�2m��v�k� . (1)

Equation (1) relates the strength of the resonance to its
frequency.

For a condensate in a parabolic trap, the density n is
inhomogeneous. The condensate can be described by the
local density approximation (LDA), as long as the Thomas-
Fermi radius of the condensate in the �k direction is much
larger than the wavelength of the excitation [4,6,11]. The
zero-temperature v�k� in the LDA is
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where a � 2m��h̄2k2�2m� and the chemical potential
m � gn� �r � 0�, where n� �r � 0� is the maximum den-
sity, g is given by 4p h̄2a�m, and m is the atomic mass.
The value cld�k� is a weak, monotonically increasing
function, which varies from ceff � 32��15p�

p
m�m

�� 0.68
p

m�m � for small k, to clarge �
p

4�7
p
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�� 0.76

p
m�m � for large k. Since cld�k� is nearly con-

stant, v�k� in the LDA (2) is very similar in form to the
homogeneous v�k� [14] in which cld�k� is replaced by the
constant c �

p
m�m, illustrating that v�k� of the trapped

condensate should largely reflect the intrinsic properties
of the homogeneous condensate.

For small k, (2) is given by v�k� � ceffk, correspond-
ing to phonons with speed ceff. Phonons are collective
excitations, each of which consists of a large number [15]
Nk of atoms with momentum h̄k, and Nk 2 1 atoms with
momentum 2h̄k. This momentum distribution was mea-
sured in [8]. Previously, a sound pulse, composed of a
combination of phonons, was seen to propagate at roughly
ceff [16].

For large k, (2) is given by

v�k� � h̄k2��2m� 1 mc2
large�h̄ , (4)

where the first term is much larger than the second. This
parabolic part of v�k� corresponds to single-particle exci-
tations, with velocity much larger than the speed of sound.
The second term in (4) is equal to �4�7�m�h̄ and is in-
dependent of k, reflecting the extra interaction energy [5]
experienced by a moving atom [17].

The transition from collective excitations to single-
particle excitations occurs for k on the order of j21,
where j is the healing length [18]. We take j21 to be the
solution of k �

p
2 mcld�k��h̄, which is given by j21 �p

2 mc�h̄, and c � �ceff 1 clarge��2.
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By the Landau criterion, the superfluid critical velocity
yc cannot be greater than v�k, for any excitation v�k�
in the spectrum [1]. Note that vortex production usually
limits the speed of superfluid flow to a value lower than
v�k [19,20].

Our condensate of 87Rb atoms in the 5s1�2, F � 2,
mF � 2 ground state is produced in a QUIC (quadrupole
and Ioffe configuration) magnetic trap [21], loaded by a
double MOT system. The magnetic trap contains 6 3

107 atoms. After 22 sec of evaporation, 1 3 105 atoms
remain, forming a nearly pure condensate, with a thermal
fraction of 5% or less. The bias magnetic field is 2 G. The
radial and axial trapping frequencies are 220 and 25 Hz,
respectively, yielding radial and axial Thomas-Fermi radii
of 3 mm and R � 28 mm, respectively.

v�k� is measured by Bragg spectroscopy [5,22]. Two
Bragg beams A and B with approximately parallel polar-
ization, separated by an angle 3± # u # 130±, illuminate
the condensate for a time tB. The frequency of beam A
is greater than the frequency of beam B by an amount v

determined by two acousto-optic modulators. If a pho-
ton is absorbed from A and emitted into B, an excitation
is produced with energy v and momentum k, where k �
2kp sin�u�2�, and kp is the photon wave number. Here,
we neglect the possibility that a single photon will excite
multiple excitations, in contrast to the case of superfluid
4He [1,23].

The time average of m�h during the Bragg pulse is
determined [24] by the radial size of the condensate after
free expansion with and without the pulse, giving m�h �
1.91 6 0.09 kHz, which is taken to be the relevant value
for v�k�.

The wave vector �k is adjusted to be along the axis of
the cigar-shaped condensate. To insure that the entire con-
densate is stimulated by the Bragg pulse, the length of
the pulse tB is chosen such that the spectral width of the
pulse is roughly equal to the intrinsic width of the reso-
nance. For this experiment, the broadening due to inho-
mogeneous density Dnld always dominates the Doppler
broadening [5], and is given by [4] 0.45 kHz for large
k, and 0.3v�k���2p� in the phonon regime. Thus, tB is
chosen to be roughly �2Dnld�21. For large k, the reso-
nance may be further broadened by s-wave scattering. For
k $ 6.8 mm21, s-wave scattering is clearly visible.

The beams are detuned D � 6.5 GHz below the 5S1�2,
F � 2 ! 5P3�2, F � 3 transition. The intensities IA

and IB of each beam are adjusted to values between
0.1 mW cm22 and 1.1 mW cm22, so that the number of
excitations is 10% to 20% of the number of atoms in
the condensate. For pulses of this strength, the chemical
potential decreases by an average of only 12% during the
pulse.

After the Bragg pulse, the atoms are allowed to expand
freely, transforming the excitations into free particles [6],
which are subsequently imaged by absorption, as shown
in Fig. 1. The left and right clouds correspond to the
condensate and excitations, respectively.
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FIG. 1. The Bragg and condensate clouds. (a) Average of
two absorption images after 38 msec time of flight, following
a resonant Bragg pulse with k � 2.8 mm21, in the phonon re-
gime. (b) Cross section of the same image. The dashed line is
a Gaussian fit to the condensate cloud, used to find the zero of
momentum. The radial and axial coordinates are indicated by
r and z, respectively.

To determine the efficiency of stimulation of excitations
by the Bragg pulse, the total momentum in the axial direc-
tion relative to the center of the condensate cloud is com-
puted from the image, in the combined regions of the two
clouds. The total momentum is divided by Noh̄k, where
No is the average number of atoms in the condensate during
the Bragg pulse, to obtain the efficiency. This efficiency is
somewhat exaggerated though, because the total momen-
tum includes momentum from the release process.

The thus-measured efficiency P�k, v� for each direc-
tion is shown in Fig. 2, for k � 2.8 mm21. The curve of
P�k, v� is well approximated by a Gaussian plus a con-
stant. The constant results from the background in the im-
ages. The symmetric shape of P�k, v� about the resonance
frequency probably reflects the spectral shape of the Bragg
pulse, rather than the intrinsic shape which is expected to
be asymmetric [4]. Therefore, the notation P�k, v� is em-
ployed, rather than S�k, v�, whose shape is the intrinsic
shape.

The resonant frequency is taken as the center value of the
Gaussian fit to P�k, v�, as shown in Fig. 2. v�k� is taken
as the average of the resonant frequencies for the left and

ω

ω π

FIG. 2. The efficiency P�k, v� for k � 2.8 mm21. The open
and filled circles are for left- and right-traveling clouds, respec-
tively. The lines are fits of a Gaussian plus a constant.
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right directions, which removes the effects of the Doppler
shift resulting from any sloshing of the condensate in the
trap during the Bragg pulse.

Figure 3a shows the measured excitation spectrum,
which agrees well with (2). A linear phonon regime is
seen for low k, and a parabolic single-particle regime for
high k. The excitations seen to have the smallest value of
v�k are the phonons. Therefore, by the Landau criterion,
the superfluid velocity yc is bounded by v�k for the
phonons.

The inset of Fig. 3a shows the low k region of v�k�.
To extract the initial slope from the data, (2) is fit to the
points with k less than 3 mm21, with m taken as a fit
parameter. The fit is not shown in the figure. The result
gives the speed of sound for the condensate to be ceff �
2.0 6 0.1 mm sec21, which is also the measured upper

FIG. 3. (a) The measured excitation spectrum v�k� of a
trapped Bose-Einstein condensate. The solid line is the Bogo-
liubov spectrum with no free parameters, in the LDA for
m � 1.91 kHz. The dashed line is the parabolic free-particle
spectrum. For most points, the error bars are not visible on the
scale of the figure. The inset shows the linear phonon regime.
(b) The difference between the excitation spectrum and the
free-particle spectrum. Error bars represent 1s statistical un-
certainty. The theoretical curve is the Bogoliubov spectrum in
the LDA for m � 1.91 kHz, minus the free-particle spectrum.
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bound for yc. This value is in good agreement with the
theoretical LDA value of 2.01 6 0.05 mm sec21. The line
at 2pR21 indicates the excitation whose wavelength is
equal to the Thomas-Fermi radius of the condensate in the
axial direction. The measured v�k� agrees with the LDA,
even for k values approaching this lower limit of the region
of validity. As k goes to zero, v�k� is seen to approach
zero, rather than exciting the lowest order radial mode,
the breathing mode, which is twice the radial trapping
frequency, 440 Hz [12,13].

In Fig. 3a, the measured v�k� is clearly above the
parabolic free-particle spectrum h̄k2��2m�, reflecting the
interaction energy of the condensate. To emphasize the in-
teraction energy, v�k� is shown again in Fig. 3b, after
subtraction of the free-particle spectrum. This curve ap-
proaches a constant for large k, given by the second term
in (4).

For a constant rate of production of excitations, the in-
tegral of P�k, v� over v, equal to the integral of S�k,v�,
is related to S�k� by [25,26],

S�k� � 2�pV2
RtB�21

Z
P�k, v� dv , (5)

where VR � �G2�4D�
p

IAIB�Isat is the two-photon Rabi
frequency, G is the linewidth of the 5P3�2, F � 3 ex-
cited state, D is the detuning, and Isat is the saturation
intensity. The closed circles in Fig. 4 are the measured
static structure factor S�k�, by (5). The values shown have
been increased by a factor of 2.3, giving rough agreement
with S�k� from Bogoliubov theory in the LDA (3). Equa-
tion (3) is indicated by a solid line. The required factor
of 2.3 probably reflects inaccuracies in the various val-
ues needed to compute VR . The open circles are com-
puted from (1), using the measured values of v�k� shown

ξπ

µ

FIG. 4. The filled circles are the measured static structure
factor, multiplied by an overall constant of 2.3. Error bars rep-
resent 1s statistical uncertainty, as well as the estimated uncer-
tainty in the two-photon Rabi frequency. The solid line is the
Bogoliubov structure factor, in the LDA for m � 1.91 kHz. The
open circles are computed from the measured excitation spec-
trum of Fig. 3, and Feynman’s relation (1). For the open circles,
the error bars are not visible on the scale of the figure.
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in Fig. 3a. The rough agreement between the closed and
open circles is consistent with the relation (1), within the
multiplicative constant applied to the closed circles. For
the determination of S�k�, it is critical that the apparent
number of excitations is not enhanced by extra momentum
obtained during the release process. Therefore, the number
of excitations is determined by the number of atoms in the
excitation cloud, rather than by the total momentum. This
technique fails for the two points with the lowest k values,
where many of the atoms do not exit the condensate cloud.
For these points, the measured S�k� seen in Fig. 4 is sig-
nificantly reduced.

For large k (short wavelength), S�k� approaches unity,
corresponding to noninteracting, uncorrelated atoms. For
long wavelengths, however, S�k� counterintuitively ap-
proaches zero. For decreasing k, the condensate contains
increasing numbers of atoms with momentum h̄k. These
atoms, rather than creating additional density fluctuations
with wavelength 2p�k, actually suppress such fluctua-
tions, because the atoms are correlated in pairs with mo-
menta 6h̄k, and opposite phase [6].

Since S�k� is always less than unity for the values of k
measured here, the density fluctuations are never greater
than in the uncorrelated case. In contrast, S�k� for super-
fluid 4He has a peak (a roton) on the order of a3n, and a
corresponding minimum in v�k�, at a wavelength compa-
rable to a [1]. In principle, S�k� for the condensate should
have a roton at a wavelength comparable to a, which is
much shorter than the wavelengths reported here, but for
a condensate in an alkali gas, a3n � 1024, so the roton is
negligible.

In conclusion, we report a measurement of the excita-
tion spectrum of a Bose-Einstein condensate, and the static
structure factor. The excitation spectrum consists of a
linear phonon regime, as well as a single-particle regime.
The linear regime provides an upper limit for the super-
fluid critical velocity, by the Landau criterion. The exci-
tation spectrum agrees quantitatively with the Bogoliubov
spectrum, in the local density approximation. The den-
sity fluctuations implied by the static structure factor agree
with the excitation spectrum within a multiplicative con-
stant, via Feynman’s relation. Feynman’s relation is thus
verified within an overall constant.
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