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Quantum Instability of a Bose-Einstein Condensate with Attractive Interaction
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We study the quantum and the mean-field Gross-Pitaevskii (GP) dynamics of a Bose-Einstein con-
densate gas confined in a toroidal trap. According to GP, if the interatomic interaction is attractive, the
rotational states of the system can be dynamically stable or unstable depending on the strength of the
mean-field energy. The full quantum analysis, however, reveals that the condensate is always unstable.
Quantum fluctuations are particularly important close to the GP stability borderline, even for systems
with a relatively large number of condensate atoms.
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Background.— According to the mean-field Gross-
Pitaevskii picture, homogeneous Bose-Einstein conden-
sate (BEC) gases with an attractive interatomic interaction
(negative scattering length) are dynamically unstable.
However, if the atoms are spatially confined, the discrete
energy spectrum allows a stability window depending on
the strength of the mean-field energy. BEC’s with a nega-
tive scattering length have raised a new class of theoretical
problems, including the superfluid nature of such systems
[1,2], and the possibility of creating fragmented conden-
sates in double-well [3] and in quasi-one-dimensional
toroidal traps [4]. The first experiments with an attractive
condensate have been done with an harmonically trapped
gas of 7Li alkali atoms [5]. A recent experimental advance
has been the demonstrations of tunability of the strength
and sign of the interatomic scattering length using a
Feshbach resonance [6–8]. This has allowed the inves-
tigation of the collapse of an initially stable 85Rb BEC
after switching the interatomic interaction from repulsive
to attractive. The collapse dynamics has been studied in
a wide range of densities/scattering length parameters,
and it has offered a number of puzzling results which
are still challenging current theoretical models. The
Gross-Pitaevskii approach, while predicting the collapse
of the system, fails to describe the many facets of its sur-
prisingly rich behavior. It has been argued that three-body
inelastic collisions and thermal effects, not included in the
GP, can play a crucial role. On the other hand, it is clear
that quantum effects can also deeply modify the classical
GP trajectories. While a full quantum dynamical analysis
is not feasible with the current state of art, some simple
models have allowed a first glimpse into the quantum
(many-body) dynamics realm. In [9] the collapse dynam-
ics has been studied semiclassically in terms of effective
inverted harmonic potentials. It has been found that the
growth of the unstable modes is initially delayed, and
then becomes superexponentially fast with respect to the
GP prediction. Such analysis, however, neglects higher
order quantum corrections that are important close to the
classical critical point. In [10], it has been argued that,
at the onset of the instability, the macroscopic quantum
tunneling of the unstable collective modes is the dominant
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decay mechanism at low temperatures, and simple (but
discording) estimates of the tunneling rate have been given
in a number of works [10,11].

Here we investigate the dynamical stability of a BEC
with an attractive interatomic interaction, and confined in
a quasi-one-dimensional (1D) toroidal trap having a square
cross section area S � r1r2, and radius R ¿ r1,2 (which
fix the radial wave function and justify the 1D assumption).
We compare the GP and the quantum dynamical growth of
the unstable modes, and we identify the limit in which the
quantum corrections of the GP can be neglected. We find
that the angular momentum (rotational) states of the BEC
are always unstable, and that the GP dynamics is asymp-
totically recovered in the limit jaj�d ! 0, N ! ` while
keeping jaj

d N � const (a , 0 is the interatomic scatter-
ing length, d �

S
8R is a characteristic geometric length of

the system, and N is the number of condensate atoms).
However, the quantum corrections to the GP remain cru-
cial close to the mean-field critical point jaj

d N � 1, where
they appear on time scales that grow as ln�N� � ln� d

jaj �.
Interestingly, the ln�N� scaling has been predicted also at
the onset of (different) dynamical instabilities [12].

Classical dynamics.—At the mean-field GP level, the
collapse of a condensate with an attractive interaction is
driven by a modulational (or parametric) instability (MI).
MI is a general feature of discrete as well as continuum
nonlinear wave equations, and refers to an exponential
growth of small fluctuations of a carrier wave, as a result
of the interplay between dispersion and nonlinearity.

Here we consider a Bose-Einstein condensate trapped
in an effective 1D toroidal geometry, in regimes of small
nonlinearity jaj�d ø 1. At sufficiently low temperatures
the system is described, at a mean-field level, by the GP
equation, which (in dimensionless units) is

i
≠C

≠t
�

∑
2

≠2

≠u2 1 UjCj2
∏
C , (1)

with U � p
a
d and 0 , u # 2p. The time has been

rescaled as h̄
2mR2 t ! t, and the normalization of the wave

function is
R
jc�u�j2 du � N . Expanding in plane waves,
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C�u, t� �
1

p
2p

P
q cq�t�eiqu , with q integer, Eq. (1) be-

comes

i �cq�t� � q2cq�t� 1
U

2p

X
mln

c�
n�t�cm�t�cl�t�dm1l2n2q ,

(2)

with cq�t�, c�
q�t� conjugate variables in the Hamiltonian:

H �
P

q q2c�
q�t�cq�t� 1

U
4p

P
mlnq c�

n�t�c�
q�t�cm�t�cl�t� 3
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dm1l2n2q. Solutions of Eq. (2) are the finite amplitude
waves:

cq�t� � cq exp

∑
2i

µ
q2 1

U

2p
jcqj

2

∂
t

∏
dq,k , (3)

with k � 0, 61, 62, . . . , and initial conditions cq�t � 0� �
cqdq,k. The states (3) can be unstable against a four-
phonon decay process: 2k ! �k 1 p� 1 �k 2 p�.
With jckj

2 � N ¿ jck1pj
2 � jck2pj

2, Eq. (2) can be
linearized:
i �ck1p�t� �

∑
�k 1 p�2 1

U

p
jckj

2 2 m

∏
ck1p�t� 1

U

2p
c2

k�t�c�
k2p�t�

i �ck2p�t� �

∑
�k 2 p�2 1

U
p

jckj
2 2 m

∏
ck2p�t� 1

U
2p

c2
k�t�c�

k1p�t� ,
(4)
with the chemical potential m � k2 1
U
2p jckj

2.
The eigenfrequencies of (4) are v6 � 2kp 6

jpj
q

p2 2
jUj

p jckj2. Therefore, the system becomes
modulationally unstable, with an exponential growth of
k 6 p modes, when

jUj

p
jckj

2 �
jaj
d

N . p2; p � 61, 62, . . . . (5)

In [4] it has been shown that this modulational instability
leads to the fragmentation of the condensate over different
angular momentum states. In the following we study the
onset of this hybridization at a full quantum level. In [9]
quantum corrections have been included in Eq. (4) quan-
tizing the ck6p modes while leaving the large wave ck as
a classical (c-number) field. This corresponds to neglect
higher order quantum correlations between the k, k 6 p
fields. Such correlations, however, are crucial when the
system is close to the classical instability point and will
not be neglected in our analysis.

Quantum dynamics.—The many-body dynamics of the
system is governed by the quantum field equation

i
≠Ĉ

≠t
�

∑
2

≠2

≠u2
1 UĈyĈ

∏
Ĉ . (6)

With Ĉ�u, t� �
1

p
2p

P
q âq�t�eiqu, we have

i �̂aq � q2âq 1
U

2p

X
mln

ây
n âmâldm1l2n2q (7)

and Ĥ �
P

q q2ây
q âq 1

U
4p

P
mlnq ây

n ây
q âmâldm1l2n2q.

We note that the use of the Fermi-pseudopotential in 1D
does not introduce the well-known divergency problems
found in higher dimensions. The validity of the 1D
many-boson Hamiltonian has been discussed in [13,14],
and the theory of the zero-range potentials in arbitrary
dimensions has been presented in [15].

To study Eq. (7) we use a projection on a coherent
state basis jaq� method described in [16]. The dynamical
evolution of aq�t� � �aqjâq�t�jaq� is given by an exact
(and closed) c-number equation:

i �aq�t� � K̂aq�t� , (8)

with

K̂ �
X
q

q2

µ
aq

≠

≠aq
2 c.c.

∂

1
U
2p

X
�qi�

µ
aq1

aq2
a�

q3

≠

≠aq4

2 c.c.

∂
dq11q22q32q4

1
U
4p

X
�qi�

µ
aq1 aq2

≠

≠aq3

≠

≠aq4

2 c.c.

∂
dq11q22q32q4

(9)

and initial conditions aq�t � 0� � aq. Solutions of
Eq. (8) are the finite amplitude waves [c.f. Eq. (3)]:

aq�t� � aq exp	2iq2t 1 �e2i U

2p
t

2 1� jaqj
2
dq,k .

(10)

These waves exhibit reversible collapses and revivals of
the many-body coherence induced by the interaction. We
now study the quantum stability of (10) with respect to
the four-phonons decay 2k � �k 1 p� 1 �k 2 p�, and
we will compare the results with the GP classical stabil-
ity condition Eq. (5). At t � 0, let the system be excited
as jakj

2 � N ¿ jaqj
2, �q fi k�. This scenario can be

experimentally realized by inverting the sign of the scat-
tering length of a stable, large condensate, as in [7]. The
generic mode ak6p�t� can be expanded over aq [17]:
ak1p�t� � f
� p�
0 �ak , a�

k , t� 1
X
qfi0

	 f�p�
q �ak, a�

k , t�ak1q 1 f̃� p�
q �ak , a�

k , t�a�
k1q
 1 O�jak1qj

2� , (11)
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with the following initial conditions: f̃�0� � 0; f
� p�
q �0� � dp,q and f

� p�
0 �0� � 0 if p fi 0; f

�p�
q �0� � 0

and f
� p�
0 �0� � ak if p � 0. Substituting and collecting terms of the same power of ak1q we obtain a close chain

of equations for the expansion coefficients

i �f
� p�
0 � M̂f

�p�
0 ; i �f�p�

q � M̂f� p�
q 1

∑
�k 1 q�2 1

U
p

jakj
2
∏
f�p�

q 1
U
p

ak
≠

≠ak
f� p�

q 2
U
2p

a�2
k f̃� p�

2q ;

i �̃f
� p�
2f � M̂f̃�p�

2q 1

∑
2�k 2 q�2 2

U

p
jakj

2

∏
f̃�p�

2q 2
U

p
ak

≠

≠ak
f̃� p�

2q 1
U

2p
a2

kf�p�
q , (12)
with M̂ � �k2 1
U
2p jakj

2
�ak
≠

≠ak
1

U
4p a

2
k

≠2

≠a
2
k

2 c.c. The
solution of the first equation in (12) is given by (10) and
describes the dynamics of a large wave in first order per-
turbation theory. The system of the other two equations
can be simplified since, due to the initial conditions
and the linearity of Eq. (12), only the two components
f

�p�
p �ak, a�

k , t� and f̃
�p�
2p �ak, a�

k , t� are different from
zero, with ak1p�ak, a�

k , t� �t� � f
� p�
p �ak, a�

k , t�ak1p 1

f̃
�p�
2p �ak, a�

k , t�a�
k2p. Writing f

�p�
p � f�ei	�k2p�222k22 U

2p

t ,

f̃
�p�
2p �

ak

a�
k
g�ei	�k2p�222k22�U�2p�
t , and replacing in (12),

we obtain that f, g obey the system of coupled equations

i
≠f

≠t
� 2�x 2 1�f 2 xg 1 2gx

≠f

≠x
,

i
≠g
≠t

� 2xf ,
(13)

with initial conditions f�0, x� � 1, g�0, x� � 0, and where
x � jakj

2 jUj

2p �j U
4p 2 p2j�21, t �

h̄
2mR2 �j U

4p 2 p2j�t,
g �

jUj

2p �j U
4p 2 p2j�21.

The GP limit of Eq. (8) [and, therefore, of (13)],
is recovered when g � jaj

d ! 0, jakj
2 � N ! `

such that x !
jUj

2p jak j
2 � jaj

d N ! const. In this limit
Eqs. (13) can be solved analytically giving f�x, t� �
eit�1 2 x�	cosh�

p
2x 2 1t� 1 i

1 2 x
p

2x 2 1
sinh�

p
2x 2 1t�
;

g�x, t� � 2ieit�12x� x
p

2x21
sinh�

p
2x 2 1t�. The oscilla-

tion frequencies of the system becomes imaginary when
x . xc �

jUj

2p N �
1
2 , which agrees with the instability

condition given by Eq. (5).
In Fig. (1) we show the classical (dashed line) and quan-

tum (solid line) evolution of jak1p j
2 as a function of

time. The quantum dynamics has been obtained solv-
ing Eqs. (13) numerically. In (a) and (b), x � 0.45 and
x � 0.49, respectively, which are in the classical stable re-
gion. However, while the classical trajectories remain con-
fined, the quantum evolution of jak1p j

2 first collapses due
to a loss of coherence [in a time scale approximately given
by Eq. (10)] and then explodes due to the instability. The
explosion becomes faster on approaching the mean-field
critical instability value xc � 0.5. In Figs. 1(c) and 1(d),
x � 0.51 and x � 0.55, and also the classical trajectories
become unstable. Yet, the quantum trajectory grows faster
than the classical one, especially when x is sufficiently
close to the critical value xc. A further view is provided in
Fig. (2), where we plot the phase portrait Re	a
 2 Im	a

of the classical (left column) and quantum (right column)
trajectories with x � 0.3, 0.45, i.e., in the classically stable
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region. The initial loss of coherence of the system is
dramatically demonstrated by the spiraling down of the
quantum trajectory to a single point (c), which eventually
explodes. Closer to the instability point (d), the time scale
associated with the instability growth becomes too large
to observe any dephasing effect. In Fig. (3) we plot t0 as
a function of x for different values of g; t0 is defined as
the time when jak1p�t0�j�jak1p�t � 0�j � 10. The clas-
sical solution g � 0 diverges for x ! 0.5, sharply sepa-
rating the t0 2 x plane into stable and unstable regions.
The quantum solutions, on the other hand, show that the
system is always unstable, and eventually collapses in a fi-
nite time, as already discussed. Here, however, it becomes
clear how the quantum trajectories reduce to the GP ones
when g � jaj

d ! 0. For realistic experiments (see section
below), if x ø xc the collapse time can be too large to
be observed, and if x ¿ xc, the difference between clas-
sical and quantum trajectories would be too small. On the
other hand, the difference between the GP �g � 0� and the
quantum trajectories �g fi 0� remains important when x is
sufficiently close to the critical value also for a relatively
small value of g. In the inset we show the linear grow
of t0 as a function of ln�N� 	� ln�d�jaj�
. We emphasize
that this scaling is predicted for the value x � 0.49, i.e.,
in the classical stable region.

Numerical estimates.—To discuss some useful orders
of magnitude, we consider a 1D torus geometry with a
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FIG. 1. jaj2 � jak1p�t�j2�jak1p �t � 0�j2 as a function of
time for g � 1023 and x � 0.45, (a), 0.49 (b), 0.51 (c), and
0.55 (d). The dashed line and the solid line are, respectively, the
classical (g � 0) and quantum (g fi 0) solutions of Eq. (13).
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Re[α ]
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[α
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(a)

(b)

(c)

(d)

FIG. 2. Phase portrait of the classical (a),(b) and quantum
(c),(d) trajectories with x � 0.3 (a),(c), and x � 0.45 (b),(d),
and a � ak1p�t��ak1p�t � 0�.

N � 1000 87Rd condensate atoms. A progress report on
the experimental realization of a toroidal traps is given
in [18], while the possibility of realizing a mesoscopic
one has been discussed in [19]. Consistent with [19],
we choose the cross section area of the torus S � r1r2 �
1028 cm2, and the radius R � 5 3 1024 cm. The nonlin-
ear coupling can be tuned over different orders of mag-
nitude, and, at the critical point, jaj � 2.5 3 1026 cm
and g � 2 3 1023. The growth time of the quantum
fluctuations scales as t �

8mR2

h̄j�U�p�24p2jt � 67
p2 t ms, and,

from Fig. (3), it can be argued that the system dephases
in �800 ms considering the lowest p � 1 unstable mode.
This time can be significantly reduced with traps of smaller
radius R, and/or with lighter alkali atoms. The growth of
the unstable modes can be experimentally measured with
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FIG. 3. Dependence of t0 as a function of x. t0 is defined as
the time when ja�t0�j2 � jak1p�t0�j2�jak1p�t � 0�j2 � 10.
The values of g are 1022, 1023, 1024, and 0. Inset: De-
pendence of t0 as a function of ln�N� with x � 0.49.
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interferometry techniques in a series of destructive mea-
surements, allowing the condensate to expand and overlap
after switching off the toroidal trap [20]. The dynamical
growth of the quantum fluctuations is manifested on the
gradual loss of the fringes’ contrast. We note that our anal-
ysis describes the onset of the instability, while for large
times [see Eq. (11)], other mechanisms not included here
(such as three-body recombinations) will clearly affect the
collapse dynamics.

Conclusions.—Quantum corrections to the Gross-
Pitaevskii equation are crucial when the system is close
to an instability point. The method (and the results)
described here can have far reaching consequences on the
study of dynamical quantum chaos in many-body systems,
and trapped BEC’s provide an ideal experimental situation
in this field where still very few results are known [16].
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