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Vortex Glass Transition in a Random Pinning Model
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We study the vortex glass transition in disordered high temperature superconductors using Monte
Carlo simulations. We use a random pinning model with strong point-correlated quenched disorder, a
net applied magnetic field, long-range vortex interactions, and periodic boundary conditions. From a
finite size scaling study of the helicity modulus, the rms current, and the resistivity, we obtain critical
exponents at the phase transition. The new exponents differ substantially from those of the gauge glass
model, but are close to those of the pure three-dimensional XY model.

DOI: 10.1103/PhysRevLett.88.117004 PACS numbers: 74.60.–w, 05.70.Fh, 75.40.Mg
The magnetic field-temperature phase diagram for vor-
tices in disordered high temperature superconductors has
been the focus of considerable interest in the past few
years, centered around, e.g., the suggestion of Fisher of
a possible vortex glass phase with vanishing linear resis-
tance [1]. Numerical simulation is often an important tool
in investigations of phase transitions in vortex systems. For
example, recent simulations have provided valuable infor-
mation about the phase diagram for the case of weak disor-
der or weak magnetic fields [2]. Here evidence for a first
order transition separating a Bragg glass phase [3], i.e.,
a dislocation-free solid with algebraically decaying trans-
lational order, from a vortex liquid phase was obtained.
However, in the opposite limit of strong disorder or strong
magnetic fields, the existence of a vortex glass phase, i.e.,
a vortex solid which is topologically disordered in terms
of frozen in dislocations, and the critical properties of the
vortex glass transition, have not been settled. In this pa-
per we study these issues by Monte Carlo simulations and
finite size scaling.

Simulations of disordered superconductors have often
used a so-called gauge glass model [4], where the disor-
der is modeled as a random vector potential added to the
phase difference of the superconducting order parameter.
This disorder corresponds to spatially random magnetic
flux present in the system. Interestingly, recent simulation
results for the gauge glass [4] give similar values for the
critical exponents as obtained in certain recent experiments
where a vortex glass has been reported [5]. However, the
gauge glass model has two features that are not particu-
larly realistic; namely, it does not assume any pinning di-
rectly affecting the vortex core energy, and, secondly, it
is completely isotropic and does not contain any net mag-
netic field. It is at present unknown if these details are
important for the universality class of the glass transition,
i.e., if they modify the critical exponents. In particular,
there is a possibility of anisotropic scaling produced by
the net field, such that the correlation length diverges with
different exponents along and perpendicular to the field.
Some of these and other issues have been addressed in the
literature.
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An XY model with a random coupling constant and a
net magnetic field has been simulated using open boundary
conditions [6]. However, periodic boundary conditions are
preferable when bulk properties are studied, to avoid any
influence of the sample surface. Also the effect of screen-
ing of the vortex interaction has been considered. Gauge
field fluctuations lead to screening of the vortex interaction.
This screening is usually rather weak in the high tempera-
ture superconductors. In models for the strong screening
limit, simulations give evidence for the absence of a vor-
tex glass phase at finite temperatures [7]. A vortex glass
scenario without any thermodynamic phase transition has
also been suggested [8].

In this paper we consider a random pinning model that
contains all the pieces necessary to describe the static uni-
versal critical properties of the vortex glass critical point:
long-range vortex interactions, strong vortex pinning, a net
applied magnetic field, and periodic boundary conditions.
The vortex-vortex interaction is a full 3D long-range in-
teraction without screening that becomes applicable when
the bare screening length is much longer than the vortex
spacing, i.e., in the strong field limit. The vortex pinning
corresponds to uncorrelated quenched point disorder, im-
plemented as a position dependent core energy. This is
equivalent to random-Tc disorder. The vortex-vortex in-
teraction and the disorder are isotropic in the model, but
the applied net magnetic field breaks the spatial symme-
try. We include the possibility of anisotropic scaling by
allowing for different correlation length exponents in the
directions parallel and perpendicular to the magnetic field.
The dynamic universality class assumed here is that of re-
laxation dynamics of the vortex lines, and we stress that
there are more dynamic universality classes possible [9].

The random pinning model is defined by the Hamilto-
nian

H �
1
2

X

r,r0
V �r 2 r0�q�r� ? q�r0� 1

1
2

X

r,m
Dm�r�qm�r�2.

(1)

The model is defined on a simple cubic lattice with V �
L 3 L 3 Lz sites, using periodic boundary conditions in
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all three directions. The vortex line variables are spec-
ified by an integer vector field q�r�, whose m � x,y, z
component is the vorticity on the link from r to r 1 em.
The partition function is Z � Tr exp�2H�T�, where T
is the temperature, and Tr denotes the sum over all pos-
sible integers qm, subject to the constraint = ? q � 0 on all
sites, i.e., the vortex lines have no open ends. An applied
net magnetic field is included as a fixed number of vor-
tex lines penetrating the system in the z direction. Three
different fillings of the applied magnetic field are consid-
ered here, i.e., number of vortex lines per link in the z
direction: f � 1�2, 1�4, 1�

p
10. For the irrational filling

we used the integer number of vortex lines closest to fL2.
The figures below are for f � 1�2. The long-range vortex-
vortex interaction is given by

V �r� �
K

V

X

k

eik?r
P

m �2 2 2 coskm�
, (2)

where K � 4p2J (we set J � 1). On each link in the
system is a short-range point-correlated random pinning
energy with a uniform distribution in the interval 0 #

Dm�r� # K. Hence the lattice constant of the discretiza-
tion lattice in our model corresponds physically to a char-
acteristic length scale for variations in the disorder energy
landscape.

The Monte Carlo (MC) trial moves are attempts to insert
vortex loops with random orientation on randomly selected
plaquettes of the lattice. A MC sweep consists of one at-
tempt on average to insert a loop on every plaquette. The
attempts are accepted with probability 1��1 1 expDE�T �,
where DE is the energy change for inserting the loop. For
half and quarter fillings the initial vortex configurations
consist of straight lines along the z direction, arranged in a
regular lattice in the xy plane. For filling f � 1�

p
10 the

initial configuration has straight lines placed at random.
For equilibration about 105 MC sweeps are used, followed
by equally many sweeps for collecting data. The results
were averaged over up to 2000 samples of the disorder.
Thermal averages are denoted by �· · ·� and disorder aver-
ages by �· · ·�. To avoid systematic errors in the calculation
of squares of expectation values, two replicas of the sys-
tem with the same disorder are used.

Superconducting coherence in the vortex line system can
be detected by calculating the helicity modulus. One way
of doing this [10] is to add a term HQ �

K
2V Q2 to the

Hamiltonian, where Qm is the total projected area of vortex
loops added during the simulation. The helicity modulus
in the direction m is then given by

Ym � 1 2
K

VT
��Q2

m� 2 �Qm�2� , (3)

and the rms current density is defined as Jm �
K
V ��Qm�2�1�2. The linear resistivity, r, is obtained
from the Kubo formula for the resistance [11],

Rm �
1

2T

t0X

t�2t0

��Vm�t�Vm�0��� , (4)
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where t is MC time, and the voltage Vm ~ DQm is the net
change in the projected vortex loop area during a sweep.
In the calculation of r the HQ term is not included in H.
The summation time t0 is chosen large enough that the
resistivity is independent of t0, but much shorter than the
length of the simulation.

We use a generalization of the Fisher-Fisher-Huse [1]
scaling ansatz to analyze our MC data. At the glass transi-
tion temperature Tc the correlation length in the xy planes,
j, and in the z direction, jz, and the correlation time, t,
are assumed to diverge as j � jT 2 Tcj

2n, jz � jz , and
t � jz . The anisotropic finite size scaling ansatz [12] for
the helicity modulus is

Yx � L32d2z fx�L1�n�T 2 Tc�,Lz�Lz � , (5)

Yz � L12d1z fz�L1�n�T 2 Tc�, Lz�Lz � , (6)

where d � 3 is the spatial dimensionality and fm are
scaling functions (scaling functions will from now on be
suppressed in the equations). The current density scales
as Jx � L22d2z , Jz � L12d. The linear resistivity r �
E�J, where E is the electric field, obeys

rx � Ld231z2z , rz � Ld212z2z, (7)

We did a number of tests of equilibration of our simula-
tions. We followed the standard procedure of calculating
the “Hamming distance” between two replicas with iden-
tical disorders [13], for some selected system sizes L, Lz .
We also increased the number of sweeps for equilibration
with a factor of 10 for a few selected parameter values, and
obtained no deviations from the data in the figures below.
The linear resistivity (shown below in Fig. 4) gives an es-
timate of the relaxation time t0, which is the time where
the curves saturate. The values for t0 give a rough estimate
of the required equilibration time. The equilibration times
used in our simulations are 	8t0.

The first step is to verify that the model has a vor-
tex glass phase, instead of a Bragg glass phase [3] that
is expected for low fillings and weak disorder. Figure 1
shows a typical snapshot of a sample configuration for
T � 0.5�øTc�, i.e., deep in the glass phase. This calcu-
lation was done using an exchange MC algorithm [14]
with nine uniformly spaced temperatures in �0.5, 4.5�.
We also computed the structure function S�q�, and ob-
tained no essential difference between S in the vortex
liquid phase and the glass phase, with no indication of
a Bragg glass phase [3]. This demonstrates that the low
temperature phase of our model, for the filling and dis-
order strength considered, is indeed a glass where the
vortex lines are frozen in random positions.

To locate the critical temperature of the vortex glass to
liquid transition, and determine the critical exponents, MC
data for the helicity modulus in the x and z directions are
analyzed by the finite size scaling form in Eqs. (5) and
(6). MC data for different T ,L, Lz for f � 1�2 are plot-
ted in Fig. 2. To determine the anisotropy exponent z ,
a sequence of system sizes Lz is examined for each L.
117004-2
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FIG. 1. Snapshot of a vortex line configuration from our MC
simulation for f � 1�2 at T � 0.5 (øTc) which is deep in the
vortex glass phase.

In the relation Lz � cLz , both c and z are varied until
data curves for Yx and Yz for different system sizes L �
6, 8, 10, 12 become approximately independent of L at a
common temperature, which is our estimate for Tc. Fig-
ure 2 shows the best crossing obtained in this procedure,
which gives Tc � 4.5 6 0.1, z � 1 6 0.1. The same re-
sults are obtained from the rms currents (inset). Equally
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FIG. 2. MC data for the helicity modulus vs temperature
for different system sizes L. Inset: rms current density vs
temperature.
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good fits are obtained for c in the interval 1.5 , c , 2.
The errors are estimated as the interval outside which con-
siderably poorer scaling is obtained.

To determine the correlation length exponent n we use
fits to Eqs. (5) and (6) to obtain a data collapse for system
sizes L � 6 12 over an entire temperature interval around
Tc. As a measure of the quality of the collapse we define
the rms fit error D � 


P
L,T ,m�LYm�L, T� 2 fm�x��2�1�2,

where x � L1�n�T 2 Tc�, and fm is estimated by, e.g.,
a cubic polynomial fit to the MC data. We did several
different types of fits, all giving similar results. Figure 3
shows the best data collapse in a two parameter fit where
both Tc and n are varied independently in the x and z di-
rections. The best fit is obtained for Tc � 4.5 6 0.1, n �
0.7 6 0.1. A good data collapse is obtained, except for the
smallest system size, where deviations are obtained below
Tc. However, for larger sizes scaling gets better, suggest-
ing that the deviation for small system size is a finite size
effect. The inset shows the rms fit error as a function of
n for fixed Tc � 4.5. Nearly identical results are obtained
by instead analyzing data for the rms currents. The same
result for n is also obtained from an analysis of the deriva-
tive of the helicity moduli with respect to T . For the lower
fillings, f � 1�4, 1�

p
10, we find similar exponents but

with larger error bars.
So far we have presented results for static quantities, and

we now consider dynamics. The dynamic critical exponent
is obtained from the linear resistivity in Eq. (4), for f �
1�2, T � Tc � 4.5, Lz � 2L. Figure 4 shows finite size
scaling data collapse according to Eq. (7) of MC data for
rx , rz vs the total MC integration time t0 in the Kubo
formula. The inset shows the rms error in a power law
fit to the MC data curves, and the best fit is obtained
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FIG. 3. Finite size scaling data collapse of MC data for the
helicity moduli in the x and z directions, obtained by fitting
both Tc and n. The data in the x direction have been shifted to
LYx 1 1 for clarity. Solid curves are guides to the eye. Inset:
rms fit error vs n at Tc � 4.5.
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FIG. 4. Finite size scaling data collapse of MC data for the
resistivity, obtained for Tc � 4.5, z � 1.45, and L � 8, 10, 12.
Inset: rms fit error in the data collapse.

for z � 1.5 6 0.2. This gives a resistivity exponent in
r � ts of s � n�z 2 1� 	 0.3.

We will now discuss the values obtained for the criti-
cal exponents of the random pinning model: z � 1 6 0.1,
n � 0.7 6 0.1, z � 1.5 6 0.2. Our correlation length ex-
ponent n is close to the limiting value at a disordered fixed
point allowed by the inequality [15]: n $ 2�d. Within
the precision obtained, we cannot distinguish this expo-
nent from that of the pure zero field 3D XY model, i.e.,
n 	 0.67. Also our dynamic exponent z 	 1.5 is consis-
tent with the zero field 3D XY model with MC dynamics
for vortex loops [9,16]. If confirmed, these results suggest
a scenario where the vortex glass transition in the random
pinning model for high fillings and strong disorder belongs
to the zero field 3D XY universality class. In particular, this
also suggests that the glass transition is driven by similar
effectively isotropic, closed vortex loop fluctuations as in
the zero field case, on top of a glassy ground state.

Finally, we compare our results with other models for
the vortex glass transition and with experiments. The
critical exponents obtained here for the random pinning
model differ considerably from those of the gauge glass
model [4]: n 	 1.39, z 	 4.2, s � n�z 2 1� 	 4.5, and
also from a random coupling 3D XY model with an applied
field and open boundary conditions [6]: n 	 2.2, z 	
3.3, s 	 5.3. Hence, these models appear to belong to dif-
ferent universality classes than the random pinning model.
Experiments on �K, Ba�BiO3 give s 	 3.9, and experi-
ments on untwinned proton irradiated YBa2Cu3O72d give
s 	 5.3 [5]. These experiments show consistency with
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expected vortex glass behavior for tilting the magnetic
field away from the c axis. Unexpectedly, the exponents
disagree considerably with our results. Further work is
needed in order to clarify the reasons for this discrepancy.

In summary, we have observed a finite temperature con-
tinuous vortex glass transition by simulations and finite
size scaling analysis of a three-dimensional random pin-
ning model. The critical exponents, z 	 1, n 	 0.7, z 	
1.5, are surprisingly close to those of the zero field pure
3D XY model, but disagree with the gauge glass model
and with some experiments. These results motivate fur-
ther theoretical and experimental work.
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