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We study the interplay between stripes and d-wave superconductivity in the two-dimensional t-t0-J
model using a variational Monte Carlo method. The next-nearest-neighbor hopping t0 , 0 stabilizes the
stripe states around 1�8 hole doping rate. We find that stripes and spatially oscillating superconductivity
coexist depending on parameters. The superconducting orders are enhanced at the hole stripe regions.
Although the energy differences are relatively small, the stripe state in which the phases between adja-
cent superconducting stripes are the opposite (antiphase) is also stabilized. We consider the possibil-
ity that the antiphase coexistence may explain the weakness of the c-axis Josephson couplings in the
La1.62xNd0.4SrxCuO4.
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Stripe states consisting of one-dimensional (1D) charge
modulation and incommensurate antiferromagnetic (AF)
order have been confirmed experimentally in some high-Tc

cuprates [1]. This new type of inhomogeneous state is
considered to play a key role in superconductivity. Re-
cent various experiments, such as neutron scattering ex-
periments, muon spin relaxations, and nuclear quadrupole
resonances, have revealed that the superconductivity coex-
ists with the static stripe states in La1.62xNd0.4SrxCuO4
[1–5]. In addition, it is observed by the measurement
of optical conductivity [6,7] that the superconductivity in
the presence of the static stripe exhibits peculiar properties
compared with other cuprates. For example, the penetra-
tion depth is 4 times longer than that of the La22xSrxCuO4,
and the c-axis Josephson plasma edge disappears. To un-
derstand these features, it is quite important to elucidate
the mechanisms of the stripe formation and the interplay
between the stripe states and superconductivity.

Theoretically, there are several issues pertaining to the
stripe states. (i) There has been some controversy whether
the stripes with periodicity consistent with experiments are
realized in microscopic theories such as the Hubbard or t-J
model [8–13]. Originally the stripe states were found in
the mean-field approximation of the Hubbard model [8].
However, the obtained periodicity was twice as long as
that observed experimentally. Although this discrepancy
can be remedied by introducing the next-nearest-neighbor
hopping (t0) [9], it is not conclusive since the mean-field
theories generally overestimate the AF order. Numerical
studies such as the density matrix renormalization group
method [11], the exact diagonalization study [12], and the
variational Monte Carlo (VMC) method [13] have been ap-
plied to the stripe problem in the t-J model, but they con-
tradict each other, probably due to the small system size
and the boundary effects. (ii) It has often been argued that
the stripe state originates from the tendency of the phase
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separation between the AF state and a hole-rich state [14].
However, the possibility of the phase separation in the small
doping region of the two-dimensional (2D) t-J model is
still controversial [15,16]. (iii) The above studies have
taken account of only the 1D charge modulation and the AF
order: superconducting (SC) order has not been consid-
ered. Although the coexistence of superconductivity and
stripes has been discussed phenomenologically in terms of
the one dimensionality of stripes [17] and in SO(5) sym-
metric theory [18], it is a more fundamental issue to study
the interplay between the stripes and superconductivity in
microscopic models.

In this paper we perform a VMC simulation to inves-
tigate competition in energies of various stripe states in-
cluding states with spatially oscillating d-wave SC order
parameters. We use the 2D t-t0-J model, which is consid-
ered a realistic model of a CuO2 plane of high-Tc cuprates.
In the VMC method, we can study the above issues using
fairly large system sizes and treating the exclusion of double
occupancies rigorously. We clarify that (i) the stripe state,
consistent with experiments, is stabilized when the next-
nearest-neighbor hopping term t0 is introduced, whose sign
(t0 , 0) reproduces the actual Fermi surface of cuprates,
and that (ii) the tendency to phase separation does not sta-
bilize the stripe state. (iii) We also consider the possibility
of stripe states with superconductivity. We find that the
stripe state with spatially oscillating SC order parameters
is stabilized depending on parameters, although the varia-
tional energy is close to that of the stripe state without SC
order.

The obtained superconductivity in the stripe state can
have a peculiar character: there is a p phase shift between
the adjacent hole stripes. This will explain the suppression
of the c-axis Josephson coupling. We also discuss the
possible origin of this p phase shift from the viewpoint
of Josephson couplings between SC stripes.
© 2002 The American Physical Society 117001-1
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We use the 2D t-t0-J model on a square lattice,
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where �ij� and ����ij���� represent the sums over the nearest-
neighbor and next-nearest-neighbor sites, respectively. cy
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As trial states with stripes, we use Gutzwiller-projected

mean-field–type wave functions PNe PGjf0� with fixing
the number of electrons Ne through PNe . jf0� is con-
structed as a vacuum of a mean-field Hamiltonian,
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Here dN and dNN are vectors toward the nearest-neighbor
and the next-nearest-neighbor sites, respectively, and
sgn�s� � 1 or 21 according to s �" or #. In order to
introduce stripe configurations, we assume spatially oscil-
lating ri and mi. Their explicit forms are chosen as

ri � r cos�2q�ri 2 r0�� , (5)

mi � m sin�q�ri 2 r0�� , (6)

where q � �0, 2pd� with d being the hole doping rate. The
amplitudes r and m are variational parameters. r0 � 0
corresponds to the site-centered stripe and r0 � �0, 1

2 � to
the bond-centered stripe. For the case r0 � 0, adjacent
stripes containing holes are located at yi � 0 and 1�2d
and run along the x direction. Since it is expected that the
SC order is enhanced on the hole stripes, we assume the
following two types of spatial variations of Dij.
(A) antiphase:

Di,i1x̂ � Dd cos�q�ri 2 r0�� ,

Di,i1ŷ � 2Dd cos�q�ri 1 �0, 1
2 � 2 r0�� ,

(7)

(B) in phase:

Di,i1x̂ � Ddj cos�q�ri 2 r0��j ,

Di,i1ŷ � 2Ddj cos�q���ri 1 �0, 1
2 � 2 r0����j .

(8)

Here Dd is another variational parameter. Although the
in-phase SC order parameter has usually been considered,
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we will show that the antiphase order parameter is stabi-
lized depending on parameters.

To obtain the ground state jf0�, we diagonalize the
Hamiltonian in Eq. (2) (the Bogoliubov–de Gennes equa-
tion) to obtain N positive eigenvalues Ea (a � 1 2 N )
and N negative eigenvalues Ēa with corresponding eigen-
vectors (ua

i , ya
i ) and (ūa

i , ȳa
i ). Using these eigenvectors

we have the Bogoliubov transformations

ga � ua
i ci" 1 ya

i c
y
i# �Ea . 0� , (9)

ḡa � ūa
i ci" 1 ȳa

i c
y
i# �Ēa , 0� , (10)

and then jf0� can be constructed by creating all negative
energy states and annihilating all positive energy states on
a vacuum of electrons j0�, i.e., jf0� �

Q
a gaḡy

aj0�.
Using the above wave function we calculate expecta-

tion values of various physical quantities by means of the
VMC method. An expectation value of an operator Ô is

�Ô� �
�f0jPGÔPGjf0�
�f0jPGPGjf0�

. (11)

We calculate the variational energy Evar � �H� of the Ham-
iltonian (1) to obtain the optimized state. We perform this
calculation on the Nx 3 Ny square lattice with 100–288
sites. Here Nx and Ny are the number of sites in the x and
y direction, respectively. It is found that the energy of the
inhomogeneous state is sensitive to the choice of boundary
conditions, i.e., periodic or antiperiodic with respect to the
hopping terms. To reduce the boundary condition depen-
dences, we average the energies over the four different sets
of boundary conditions with periodic or antiperiodic ones
in each direction. This kind of procedure is known to be
effective in numerical studies, such as small-cluster exact
diagonalization [19,20]. In the 1D t-J model, this method
gives a quite good result for the ground state energy [20].

Figure 1 shows the t0 dependences of the optimized
variational energies at J�t � 0.3 for various system sizes.
The hole doping rates d are 1�8 [see Fig. 1(a)] and 1�10
[see Fig. 1(b)]. The solid symbols in Fig. 1(a) show the
system size dependence of the variational energy for the
stripe states without SC order. As we increase the number
of sites, the size dependence becomes weak and we clearly
see that the stripe state has a lower variational energy than
the homogeneous d-wave SC state (expressed by 3 sym-
bols) when t0�t , 20.1 for d � 1�8. The same result is
obtained for d � 1�10 when t0�t , 20.2 [Fig. 1(b)].

Here we discuss the effect of the t0 term on the stripe for-
mation. Without t0 term, any stripe states give higher en-
ergy than the homogeneous d wave state. This means that
the negative t0 is necessary for stabilizing the stripe states.
We consider several reasons: (i) It is known that holes can
be doped in the AF region when t0 . 0. However, holes
are repelled out from the AF region when t0 , 0, which
leads to the stripe formation. (ii) The nesting property of
the Fermi surface, discussed in the Hubbard model [9], also
helps the stabilization of the stripe states with the present
incommensurability. In our calculation, it is apparent that
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FIG. 1. Variational energies of the stripe states for J�t � 0.3:
(a) 1�8 doping and (b) 1�10 doping as a function of t0�t. The
data have been optimized with respect to the parameters r, m,
t0y , m, and Dd . The filled symbols represent the energies of the
stripe states without SC order. The open symbols indicate those
of the stripe states with antiphase (open circles) and in-phase
(open triangles) SC order. Energies of the homogeneous d-wave
superconducting states are shown by the 3 symbols.

the stripe stability is sensitive to t0�t which determines the
geometry of the Fermi surface.

Let us discuss the relation to the phase separation. It has
been shown [21] that the negative t0 term suppresses the
tendency toward the phase separation. We have confirmed
this in our VMC calculations. Considering these effects
of the negative t0 term, we conclude that the tendency
to phase separation does not favor the stripe formation.
Our results are also consistent with Han et al. [22] who
showed that the suppression of the phase separation with
a Coulomb repulsion stabilized the stripe states. In order
to check this further, we carried out VMC calculations at
larger values of J�t (J�t � 0.5), where the tendency of
the phase separation is stronger. In this large J�t region,
the stripe states are not stabilized for d � 1�8 and 1�10.

Next we study the interplay between the stripe states and
superconductivity. In Fig. 1, we also show the variational
energies of the stripe states with SC order parameters (open
symbols). For d � 1�8 [Fig. 1(a)], the variational energy
of the stripe state with SC order is slightly higher than that
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without SC order, while it is the lowest variational energy
for d � 1�10 and t0�t , 20.15 [Fig. 1(b)]. Although
both coexistent states with in-phase and antiphase SC have
similar energies in Fig. 1(b), the state with antiphase SC
order is slightly stabilized.

These calculations show that the coexistent states of
stripes and SC order are stable in certain parameters. How-
ever, the energy gains 	0.001t are small in the parameter
region appropriate for high-Tc cuprates (probably t0�t �
20.1 	 20.3). Considering the size and boundary con-
dition dependences, we speculate that, in the t-t0-J model,
there are various low-energy states including stripe states
with and without SC order parameters. This type of quasi-
degeneracy occurs specifically for t0�t � 20.1 	 20.3
and the doping rate d � 1�8 and 1�10. This is the reason
why the previous numerical studies have been controversial
[11,12]. In the actual high-Tc materials, we expect that the
state is sensitive to small perturbations, such as low tem-
perature tetragonal lattice distortions in La-based cuprates.
Our finding will also explain the variety of Tc near d �
1�8 in LSCO [23].
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FIG. 2. Profiles of the expectation values of (a) hole density
1 2 �ni" 1 ni#�, (b) staggered magnetization �21�xi1yi �ni" 2
ni#�, and (c) the d-wave SC order parameters are plotted (solid
circles) in the optimized variational state in the t-t0-J model
with J�t � 0.3, t0�t � 20.15. The hole density is chosen as
d � 1�12, but similar profiles are also obtained for d � 1�8,
where the distance of the adjacent hole stripes is four lattice
constants consistent with experiments. For comparison, profiles
in the optimized stripe state without d-wave SC order (Dd � 0)
are also shown by the open circles.
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The stripe state with the antiphase SC order parameter
found here is a new exotic state. In Fig. 2, we show the
spatial variation of the expectation values in this state for
d � 1�12, t0�t � 20.15, and J�t � 0.3 (solid circles).
For comparison, those in the stripe states without SC order
are shown as open circles. Stripes are located along the x
direction, where the hole density is large, and the neighbor-
ing stripes are separated by the regions with the enhanced
staggered magnetization. It is noted that the hole density
in the stripe is about 0.14 which is much smaller than 0.5
in the schematic picture originally proposed [1]. This is
due to the apparent quantum fluctuation of the stripes. In
comparison to the stripes without d-wave SC order (open
circles), the AF domain wall and hole stripes are not as
sharp. Also the maximum of the staggered magnetization
is slightly suppressed due to the presence of d-wave SC
orders. In Fig. 2(c), we show the spatial variation of the
SC order parameter Dexp obtained from the calculations of
the correlation functions,

Dx�i, i 1 l� �
X
s

�cy
isc

y
i1x̂,2sci1l1x̂,2sci1l,s� . (12)

It is shown that the d-wave SC order is enhanced along
the hole-rich region. The maximum value of Dexp on the
stripes is close to the value in the homogeneous d-wave
SC state which has Dexp � 0.058.

Now we discuss why the antiphase SC order is stabilized.
It is known that indirect tunneling through an Anderson
magnetic impurity produces the negative Josephson cou-
pling [24]. It is explained as follows: Because of the pro-
hibition of the double occupancy, a Cooper pair tunneling
though the impurity must accompany an exchange of one
electron of the pair with the impurity electron. This process
gives an extra sign (21) for the Josephson coupling due to
the anticommutation relation of fermions. In our case, we
speculate that an indirect tunneling process across the mag-
netic AF domain without double occupancy stabilizes the
p phase shift between neighboring SC stripes through the
negative Josephson coupling. Further work would, how-
ever, be needed to study carefully the difference between
the AF domain and single magnetic impurity.

We find that the qualitative differences between stripe
states with in-phase SC order and with antiphase SC or-
der do not appear in the spatial profile and the momentum
distribution function. However, the difference will appear
if we perform phase sensitive experiments such as the Jo-
sephson plasma resonance. In fact, it is reported that the
c-axis Josephson plasma edge disappears in La1.62xNd0.4-
SrxCuO4 [6]. We believe this disappearance could be ex-
plained by the stripe states with the antiphase SC order.
Because the direction of the stripes are rotated by 90± in
the neighboring CuO2 planes, the Josephson coupling is
drastically weakened compared with the in-phase SC states
due to the phase alternations.
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In the actual experimental situations at finite tempera-
tures and with disorders, we expect that the phases be-
tween adjacent hole stripes can be in-phase or antiphase at
random because the energy difference is small. This also
weakens the superconductivity in stripe states.

In summary, we investigate the stability of the stripe
states for t0�t , 0 and the coexistence with the d-wave SC
order in the 2D t-t0-J model. We found that the stripe state
is stabilized near 1�8 doping if we introduce the negative
t0 term, while this term does not favor the phase separation.
It is found that the stripe states with antiphase SC, which
have not been considered before, are slightly stabilized
compared with the stripes with in-phase SC. We consider
that such an antiphase SC order explains the weakness of
the c-axis Josephson coupling.

[1] J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996).
[2] J. M. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997).
[3] J. E. Ostenson et al., Phys. Rev. B 56, 2820 (1997).
[4] B. Nachumi et al., Phys. Rev. B 58, 8760 (1998).
[5] P. M. Singer et al., Phys. Rev. B 60, 15 345 (1999).
[6] S. Tajima et al., J. Phys. Chem. Solids 59, 2015 (1998).
[7] S. Tajima et al., Europhys. Lett. 47, 715 (1999); Phys. Rev.

Lett. 86, 500 (2001).
[8] D. Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749 (1989);

K. Machida, Physica (Amsterdam) 158C, 192 (1989); H. J.
Shultz, Phys. Rev. Lett. 64, 1445 (1990); J. Phys. (France)
50, 2833 (1989); J. Zaanen and O. Gunnarsson, Phys.
Rev. B 40, 7391 (1989); M. Kato et al., J. Phys. Soc. Jpn.
59, 1047 (1990); J. A. Vergés et al., Phys. Rev. B 43, 6099
(1991); Europhys. Lett. 14, 157 (1991).

[9] K. Machida and M. Ichioka, J. Phys. Soc. Jpn. 68, 2168
(1999); 68, 4020 (1999).

[10] M. Fleck et al., Phys. Rev. Lett. 84, 4962 (2000).
[11] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1272

(1998); 81, 3227 (1998).
[12] C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 83, 132

(1999).
[13] K. Kobayashi and H. Yokoyama, J. Low Temp. Phys. 117,

199 (1999).
[14] S. A. Kivelson, V. J. Emery, and H. Q. Lin, Phys. Rev. B

42, 6523 (1990).
[15] W. O. Putikka, M. U. Luchini, and T. M. Rice, Phys. Rev.

Lett. 68, 538 (1992).
[16] C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 78,

4609 (1997); Phys. Rev. B 61, 11 787 (2000).
[17] V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B

56, 6120 (1996).
[18] M. Veillette et al., Phys. Rev. Lett. 83, 2413 (1999).
[19] D. Poilblanc, Phys. Rev. B 44, 9562 (1991).
[20] M. Ogata et al., Phys. Rev. Lett. 66, 2388 (1991).
[21] T. Tohyama et al., Phys. Rev. B 59, R11649 (1999).
[22] J. H. Han et al., cond-mat/0006046.
[23] See, for example, S. Katano et al., Phys. Rev. B 62, R14677

(2000).
[24] B. I. Spivak and S. A. Kivelson, Phys. Rev. B 43, 3740

(1991).
117001-4


