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Stress Field in Granular Systems: Loop Forces and Potential Formulation
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The transmission of stress through a marginally stable granular pile in two dimensions is exactly
formulated in terms of a vector field of loop forces, and thence in terms of a single scalar potential. This
leads to a local constitutive equation coupling the stress tensor to fluctuations in the local geometry. For
a disordered pile of rough grains this means the stress tensor components are coupled in a frustrated
manner. In piles of rough grains with long range staggered order, frustration is avoided and a simple
linear theory follows. We show that piles of smooth grains can be mapped onto a pile of unfrustrated
rough grains, indicating that the problems of rough and smooth grains may be fundamentally distinct.
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It has long been recognized in engineering practice that
granular materials which lack cohesion cannot be regarded
entirely as solids, nor (until “fluidized” or yielding) can
they be regarded entirely as fluids [1]. In this Letter we
explore the scenario that there exists a marginal state of
granular matter in between solid and liquid. Most particu-
larly, we are concerned with how that intermediate state
transmits stress.

The marginal state is readily characterized in terms of
the mean coordination number z̄ for mechanical equilib-
rium. If external loads, such as gravity, are exerted on
a pile of N grains [2] then the Nz̄�2 intergranular forces
must be able to adjust so as to achieve Nd�d 1 1��2 con-
straints balancing the force and torque on each grain in
d dimensions. For perfectly rough grains, where every
contact supports friction, this gives a critical coordination
number zc � d 1 1, while for ideally smooth asymmet-
ric grains with no friction zc � d�d 1 1� [3–5]. For the
special case of perfectly spherical smooth grains zc � 2d,
which matches the maximum mean coordination attainable
by sequential packing [6], a fact exploited by Tkachenko
and Witten [7].

For mean coordination numbers z̄ , zc the pile cannot
be stable and under a general loading it must rearrange
or consolidate. By contrast, for z̄ . zc the intergranular
forces are underdetermined by the conditions of force and
torque balance alone, and the deformation of individual
grains, together with their local constitutive equations, be-
comes relevant: we then have a solid of constitution influ-
enced by that of the individual grains.

The marginal case z̄ � zc is special in that the inter-
granular forces, and hence distribution of stress, are deter-
mined by conditions of balance of force and torque alone.
This has been identified as a paradigm problem of theoreti-
cal granular mechanics [1,8,9]. What makes the problem
intriguing is that the conventional macroscopic analogs of
balancing force and torque,

�= ? ŝ � �F, ŝ � ŝT (1)
0031-9007�02�88(11)�115505(4)$20.00
(where ŝ and �F are, respectively, the stress tensor and
external load), are not a sufficient set of equations without
d�d 2 1��2 further relations. The central mystery we are
seeking to unravel is the nature of the missing equations
(one in two dimensions) when they also arise from local
force and torque balance.

We resolve the issue by an analysis based on circulating
loop forces. Our analysis is restricted to the case of bound-
ary loading (i.e., �F � 0 in the bulk) and for simplicity to
two dimensions of space. In two dimensions the grains
enclose uniquely defined voids, as shown in Fig. 1, and
around each void we have a corresponding loop of con-
tacting grains. Around each loop we define a loop force
�fl circulating in the anticlockwise direction, that is, 1 �fl

contributes to each intergranular force around the loop with
a (notionally) positive sign in the anticlockwise direction,
and vice versa for the reaction forces. Each contact point
is party to exactly two such loops, and the resulting total
force across that contact is a difference between the two
contributing loop forces.

The loop forces have two key features, the first being that
they parametrize the intergranular forces in a manner that
automatically satisfies the balance of force at each contact
point and on each grain. In terms of them we can write the
force moment for each grain as

Ŝg �
X

l

�rlg
�fl , (2)

where �rlg is the vector connecting (anticlockwise) the two
contact points shared by loop l and grain g. The vectorsP

g �rlg � 0 form an anticlockwise loop around the contact
points of loop l and likewise

P
l �rlg � 0 form a clockwise

loop around the contact points of grain g and play a central
geometrical role in our discussion. The density of force
moment gives the macroscopic stress.

The second key feature of the loop forces is that, being
defined on the loops which are half as numerous as the
grains, they are a comparatively coarse-grained quantity.
The hidden nature of the constitutive equation can now be
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FIG. 1. The local geometry around a grain g. The vectors
�rlg connect contact points clockwise around each grain g and
anticlockwise around each void loop l, while the vectors �Rlg
connect from grain centers to loop centers. The stress field
is coupled through tensors Ĉg �

P
l

�Rlg �rlg , whose antisym-
metric part has a magnitude Ag which is the area shaded in
the figure. The symmetric parts of these tensors evaluate to
P̂g �

1
2

P
l �slg �slg 2 �tlg�tlg and play a crucial role in the consti-

tutive equation. As can be seen from the labeling of the vectors
�slg and �tlg in the figure, neighboring grains share equal and op-
posite contributions to their respective P̂g , �slg � 2�tlg0 , so these
tensors tend to zero upon local averaging.

readily appreciated, because the only remaining constraints
that the loop forces have to obey is the balance of torque
around each grain, that is,

X
l

�rlg 3 �fl � 0 (3)

which gives two equations per loop.
The two torque equations per loop give us two macro-

scopic conditions, symmetry of the stress tensor ŝ � ŝT ,
plus a constitutive relation. To achieve this separation ex-
plicitly we interpolate the loop forces to a function of con-
tinuous position �f� �r�, with each loop having a nominal
center �Rl so that �f� �Rl� � �fl. For example, for a grain
with z � 3 the loop centers form a triangle and �f��r� is
uniquely and exactly defined by linear interpolation from
the vertex values. Then we can write

� �= �f�g � 1�A�

3X
l�1

R̂ ? � �Rl11 2 �Rl21� �fl , (4)

where R̂ � � 0
21

1
0 � is the unit antisymmetric tensor cor-

responding to p
2 rotation in the plane, A� is the triangle

area, and l 6 1 are the vertices cyclically before and af-
ter vertex l. A similar continuation of �f is possible for
grains with z . 3 although not as straightforward [10].
In terms of the continuous field �f, the force moment on
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grain g is

Ŝg � Ĉg ? � �= �f�g where Ĉg �
X

l

�rlg
�Rl . (5)

The geometric tensors Ĉg characterize the local ge-
ometry around grain g and their symmetric and antisym-
metric parts have quite distinctive properties. It is readily
shown that

Ĉg � AgR̂ 1 P̂g , (6)

where Ag is the area associated with grain g shaded in
Fig. 1. The areas Ag have the convenient property of
tessellating the plane such that

P
g Ag is the area of the

entire system. The symmetric part, P̂g, represents a fluc-
tuation in the local chirality around grain g and can be
expressed as

P̂g �
X

l

1
2

��slg �slg 2 �tlg �tlg� , (7)

where the vectors �slg and �tlg are shown in Fig. 1. It is a cru-
cial point that neighboring grains share equal and opposite
contributions �s�s and 2�t �t to their P̂ tensors, �slg � 2�tlg0

in Fig. 1. From this it follows that the volume average �P̂�
vanishes up to boundary terms independent of any assump-
tions of isotropy. For periodic lattices �P̂� vanishes over
one unit cell.

To underpin the significance of Cg as the relevant geo-
metrical order parameter, consider a region of area A
whose boundary is defined by the contact points of the
outermost grains. Averaging over Ŝg in the region, using
Eq. (5), gives

�ŝ� �
1
A

X
g

Ĉg ? �= �f � �Ĉg ? �= �f� . (8)

Carrying out the same summation using Eq. (2) we observe
that the sum over loops inside the region cancels out and
the only contribution comes from the boundary vectors, �rb ,
between boundary contact points,

�ŝ� �
1
A

X
boundary

�rb
�fb , (9)

where �fb is the external loading on the region. This con-
tour sum can be converted, using Stokes theorem, into

�ŝ� �
1
A

Z
ds R̂ ? �= �f � R̂ ? � �= �f� . (10)

Since �P̂g� � 0 we identify �Ĉg� � AR̂ and, on comparing
to Eq. (8), we obtain

�Ĉg ? �= �f� � �Ĉg� ? � �= �f� . (11)

This result is particularly reassuring because it yields the
effective response of a macroscopic granular region to a
force field in terms of an effective macroscopic character-
istic property �Ĉg�. It is equivalent to results in contexts
such as disordered dielectrics and continuum elasticity that
are derived by combining a field equation with either a con-
stitutive relation or an energy functional [11].
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We can now construct the constitutive equation in
terms of a mean field continuum stress tensor based on
Eq. (10) as

ŝ � R̂ ? �= �f . (12)

This can be inverted to substitute �= �f � R̂T ? ŝ into
Eq. (5), and then for the torque on grain g to vanish re-
quires the antisymmetric part of Ĉg ? R̂T ? ŝ � 2Agŝ 1

P̂g ? R̂T ? ŝ should vanish. This gives both the already
anticipated requirement that ŝ is symmetric and a new
relation which, in terms of the components Pij of P̂, is

P11s22 1 P22s11 2 2P12s12 � 0 . (13)

Relation (13) is the continuum constitutive equation that
provides the missing link between the stress and the local
geometry. It has the striking feature that the coefficients P̂
are spatially fluctuating quantities that locally add to zero,
undermining any simple attempt to identify a nonvanishing
mean field value �P̂�. In this sense the problem is analo-
gous to spin glasses, in our case it being ŝ that is subject
to spatial couplings of the random sign [12].

Constitutive equations for stress components in the form
of (13) have been suggested for modeling empirically
stress transmission in sandpiles [8,13]. These presume
that a nonvanishing macroscopic version of P̂ exists, e.g.,
the hypotheses of “fixed principal axes” (corresponding to
P̂ being traceless) and “oriented stress linearity” [13]. Our
observation that the simple grain average of P̂ vanishes
suggests that this assumption is far from straightforward.
We are therefore particularly motivated to consider any
case where a nonzero effective P̂ can be identified.

Drawing inspiration from spin problems, we focus on
granular systems with antiferromagneticlike order. The
key idea is that, for systems where every loop has an even
number of edges, we can uniquely label all grains 1 and
2 (or vice versa) such that each grain is surrounded only
by opposite sign neighbors, a pattern that is commonly
termed unfrustrated. In such systems we can distinguish
locally averaged values P̂1 and P̂2, restricted to the re-
spective 1 and 2 grains, and Eq. (13) holds with either
replacing P̂. Thus the problem is solved because we now
have a local nonvanishing order parameter, say, P̂1, whose
volume average does not vanish macroscopically and we
have a nontrivial additional equation for the stress field.
The simplest class of systems where we can see this work
is a periodic lattice with the connectivity of a honeycomb
and a generally anisotropic unit cell comprising two grains,
which we duly label 1 and 2 (see Fig. 2). Then the condi-
tion that both Ŝ1 2 Ŝ2 and ŝ ~ �Ŝ1 1 Ŝ2� be symmet-
ric leads to the constitutive equation (13) with P̂ replaced
by P̂1�fi 0� whose value holds for the entire periodic
structure.

The idea of a staggered order parameter can be further
exploited to formulate a mapping from perfectly smooth
to perfectly rough systems. We note that the behavior of
115505-3
2t
-

+ +
+

++

- -

--

3s

s2

s1
t1

t3

FIG. 2. Part of an anisotropic periodic lattice, where there are
two distinct grains, labeled 1 and 2, per unit cell. Stress trans-
mission is controlled by the tensor P̂1 � 2P̂2 �

1
2

P
k �sk �sk 2

�tk �tk . The lattice vectors are �t1 1 �s1, �t2 1 �s2, and �t3 1 �s2 and,
because these are not independent, the value of P̂1 turns out to
be independent of the choice of loop center.

a pile of perfectly smooth grains is identical to the same
pile of rough grains provided that at each contact point
we insert a vanishingly small perfectly rough ball bear-
ing. It is readily checked that starting from z̄ � 6 for
the smooth grains leads to z̄ � 3 for the resulting set of
rough grains (three-fourths of which are the new bearings,
each having z � 2), so we duly arrive at a marginally con-
nected set of rough grains. Furthermore, in the rough sys-
tem we automatically have a staggered order since each
original grain �1� is surrounded only by bearings �2� and
vice versa. Explicit evaluation shows that for each bearing
lime!0P̂2 ~ e where e is the bearing radius and so, in this
case, the appropriate order parameter is p̂ � lime!0P̂1�e.
This order parameter, and hence the corresponding P̂eff,
will generally have a nonzero average for any orientation-
ally ordered assembly of smooth grains, and in particu-
lar for a periodic array where such a calculation has been
computed explicitly [5].

Returning to rough grains, general piles may clearly
have loops with odd numbers of edges and therefore there
is no way to tag the grains by 1 or 2 in the above pattern.
Such piles are frustrated in the sense that they must contain
neighbors of like sign, which undermines the above defi-
nition of a global nonvanishing order parameter P̂. This
implies that there is an inherent difference between frus-
trated and unfrustrated systems which has macroscopic im-
plications for the stress field in the sense that only for the
latter can we find a missing equation for the stress field.
Since perfectly smooth systems can always be mapped to
unfrustrated rough systems, it follows that there may be an
inherent difference between the smooth and rough grain
piles.

Finally, to underpin the exact nature of our analysis,
we introduce an alternative formulation of the problem
in terms of a potential field. The circulating loop forces
115505-3
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amount to two degrees of freedom per loop and hence can
be represented in terms of one scalar per grain, a grain
potential cg. A natural way to achieve this is via

�fl �
21
Al

X
g

�rlgcg , (14)

where Al is the loop area analogous to the grain area Ag

described above. The Al’s tessellate the systems uniquely
and

P
l Al is the entire system area. The potentials are

determined by substituting (14) into Eq. (3), leading to

X
l,g0

1
Al

�rlg 3 �rlg0cg0 � 0 . (15)

We emphasize that the above potential formulation is
exact. We now continue the c field throughout the system
just as we did previously for the force field and show that
this leads to identification of c with the conventional Airy
stress function [14]. We expand around the loop centers
and obtain

�fl �
1
Al

Ĉl ? �=c . (16)

The geometrical tensor Ĉl �
P

g �rlg� �Rl 2 �Rg� is the loop
analog of Ĉg and its antisymmetric part is likewise associ-
ated with the area Al . The symmetric part of Ĉl is sensitive
to the choice of grain center positions �Rg: as there are two
grains per loop these constitute four degrees of freedom
per one Ĉl tensor and therefore these tensors can be cho-
sen to be purely antisymmetric, Ĉl � AlR̂. We can now
express our continuum stress field [Eq. (12)] as

ŝ � R̂ ? �=R̂ ? �=c � �= 3 �= 3 c (17)

which reassuringly recovers Airy’s representation of a
symmetric divergence-free stress field [14].

To conclude, we have formulated a theory of stress trans-
mission in granular matter at the marginal state between
solid and fluid in terms of loop forces, which in turn can
be defined in terms of a scalar potential. These results ap-
ply strictly to two-dimensional systems and their validity
to three dimensions remains an open question.

The theory provides the elusive missing equation
without resorting to phenomenological assumptions and
exposes the sensitivity of granular matter to local geo-
metrical fluctuations. These have zero average, preventing
us from developing a simple mean field theory in the
general case. Where these fluctuations have an antiferro-
magneticlike order we obtain a global consitutive relation
leading to a macroscopic theory. In particular, we have
115505-4
shown that piles of smooth grains map into such an unfrus-
trated case. Nonfrustration for smooth grains is supported
by exact lattice calculations [5] and by the simulations
of Tkachenko and Witten [7]. These results point to an
inherent difference between rough (frustrated) and smooth
(ordered) systems, suggesting that there may be a subtle
transition of behavior somewhere in between.
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