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Percolation Model for Nodal Domains of Chaotic Wave Functions
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Nodal domains are regions where a function has definite sign. In [1] it is conjectured that the dis-
tribution of nodal domains for quantum eigenfunctions of chaotic systems is universal. We propose a
percolationlike model for description of these nodal domains which permits us to calculate all interesting
quantities analytically, agrees well with numerical simulations, and due to the relation to percolation
theory opens the way to deeper understanding of the structure of chaotic wave functions.
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In a recent paper [1], Smilansky et al. consider the
following problem. Let C�x, y� be a real eigenfunction
of a two-dimensional quantum problem. The equation
C�x, y� � 0 determines a set of nodal lines which sepa-
rate nodal domains where C�x, y� is of opposite signs.
In [1] it is argued that the distribution of the number of
these regions for high excited states (i) is universal for
integrable as well as for chaotic models but (ii) clearly
distinguishes between these two types of models.

For chaotic (billiard) systems it is conjectured in [1] that
this distribution coincides with the distribution of nodal
domains for Gaussian random functions which are known
to give a good universal description of wave functions of
chaotic systems with a given energy E [2]:

C�x, y� �
X̀

m�2`

CmC �0�
m �x,y� . (1)

Here C
�0�
m �x, y� � Jjmj�kr�eimf form the standard basis

for billiard problems, k �
p

E is the momentum, and
Cm � C�

2m are independent random variables with Gauss-
ian distribution. Numerical calculations of the nodal do-
main distribution for these functions and for certain chaotic
systems have been performed in [1].

The purpose of this Letter is to demonstrate that nodal
domains of random functions (1) (and, consequently, wave
functions of generic chaotic systems [1,2]) can be de-
scribed by a simple percolationlike model where all in-
teresting quantities can be calculated analytically. The
model permits us also to apply ideas and methods devel-
oped within the percolation theory to the field of quantum
chaos and to other problems where nodal domains of ran-
dom functions are of importance, e.g., to the description
of the interface between two-phase systems (see, e.g., [3]
and references therein).

To understand how the nodal domains look we give in
Fig. 1 their picture for one realization of random function
(1). White and gray regions correspond to domains where
function C�x, y� has different signs. The figure contains
907 connected nodal domains of different sizes and various
irregular shapes.

The mean number of zeros of random functions (1)
along a straight line (say the vertical one) can be estimated
by noting that, if the size in the y direction is Ly , the ap-
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proximate quantization condition reads k̄yLy � pm where
m is an integer and k̄y is the mean square momentum along
the y axis, k̄2

y � k2�2. Therefore

r̄� y� �
m
Ly

�
k

p
p

2
. (2)

The rigorous derivation of this relation using the method
of [4] will be given elsewhere [5]. The same answer, of
course, can be obtained for the mean density of nodal lines
along any other straight lines [6] and nodal lines of such
random functions can in the mean be considered as forming
an approximate rectangular lattice whose total number of
sites is asymptotically

Ntot �
k2A

2p2 �
2
p

N̄�E� , (3)

where A is the area of the billiard and N̄ � AE�4p is the
mean number of levels with energy less than E.

FIG. 1. Nodal domains for a realization of random function (1)
with k � 100 in a square window of size L � 4. The largest
of these domains and the largest of the domains which do not
touch the boundary are highlighted for clarity.
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c)a) b)

FIG. 2. (a) True nodal crossing. (b) and (c) Avoided nodal
crossings.

But this simple picture can be valid only in the mean.
When C�x, y� � C̄�x, y� 1 dC�x,y� where function
C̄�x, y� has a crossing of nodal lines as in Fig. 2a, the
addition of a small correction dC�x,y� changes, in
general, the true crossing to one of two possible avoided
crossings as in Figs. 2b and 2c.

Consequently, one can conjecture that the distribution of
nodal domains for random functions is the same as for the
following random percolationlike process. Let us consider
a rectangular lattice with the total number of sites Ntot as
in (3). Each line crossing with probability 1�2 is changed
either to the avoided crossing as in Fig. 2b or to the one
as in Fig. 2c. These rules give a well-defined random
percolationlike process. One realization of such a process
is presented in Fig. 3.

The original lattice gives rise to two dual lattices called
below positive and negative whose vertices are in the cen-
ters of regions where our function is positive or negative
(see Fig. 3) and whose size a coincides with de Broglie
wavelength [cf. (2)]: a � 2p�k. Any realization of the
above mentioned random process uniquely defines two
graphs on these lattices (which we call also positive and
negative) with the following properties: (i) their vertices
coincide with the vertices of the corresponding lattice;
(ii) their edges join together the connected components of
this lattice. (A point is also a component of the graph.)

One can choose arbitrarily a graph on one lattice (say
negative) and any of such graphs will correspond to an
allowed realization and vice versa. Therefore our random

FIG. 3. A realization of random percolationlike process. The
plus and minus form two dual lattices. Solid and dashed lines
indicate graphs for, respectively, negative and positive dual
lattices.
114102-2
process is determined mostly by the bond percolation
model on one of the dual lattices (see, e.g., [7]) where with
probability 1�2 one connects 2 nearby sites by a bond.

The number of connected nodal domains coincides with
the sum of the numbers of different components of both
positive and negative graphs. As in [1] first we are in-
terested in the distribution of these numbers. To compute
this quantity (unusual for the percolation) it is convenient
to connect this model with the Potts model (see, e.g.,
[8]) similarly as it was done in [9] for a slightly different
problem.

Let n6 be the numbers of connected components of
positive and negative graphs. The generating function of
their sum is

Z�x� �
X

realizations

xn21n1 , (4)

where variable x plays the role of the fugacity.
The negative and positive graphs, by construction, are

dual to each other [10] and their properties are interrelated.
In particular (see, e.g., [8], p. 242), n1 � C2 1 1 where
C2 is the number of independent circuits on the negative
(dual to the positive) graph. According to the Euler relation
this quantity can be expressed as follows: C2 � b2 1
n2 2 N2, where b2 is the number of bonds, n2 is the
number of connected components, and N2 is the number
of vertices of the negative graph.

These relations permit us to express the generation func-
tion (4) through the properties of only negative graph,

Z�x� � x12Ns

X
G2

xb2�x2�n2 , (5)

where we take into account that N2 equals the total number
of sites of negative lattice Ns � Ntot�2.

But this quantity is directly connected with the partition
sum of the Potts model [8,11]. The later can be defined
for an arbitrary graph by the formal sum

ZPotts�y, q� �
X
G

yb�G�qn�G�, (6)

where the summation is performed over all graphs G which
cover the original graph. b�G� is the number of bonds of
this graph, n�G� is its number of connected components.
q is the number of states of the Potts model, y � eK 2 1
is a parameter related with the inverse temperature K.

Comparing (5) and (6) one gets

Z�x� � x12NsZPotts�x, x2� . (7)

The last sum corresponds to the Potts model in the critical
point y2 � q; for large rectangular lattice and q , 4 it
was computed analytically [11]

lim
Ns!`

1
Ns

lnZPotts�x, x2� � logx 1 f�x� , (8)

where

f�x� �
Z `

2`

dt
t

tanhmt
sinh�p 2 m�t

sinhpt
, (9)
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and the parameter m�0 , m , p�2� is related to the fu-
gacity x as follows: cosm � x�2.

The expansion of expression (7) into series of x gives
the number of nodal domains with a fixed number of com-
ponents Nn. With exponential accuracy

X̀
n�1

Nnx
n � x exp�Nsf�x�� . (10)

We are interested in the behavior of Nn for large n near the
maximum of Nn with a fixed number of sites. One has

Nn �
1

2pi

I dz
zn

exp�Nsf�z�� , (11)

where the integration is performed over a contour around
zero. Assuming that n is large and using the saddle point
method one obtains Nn ~ expF�n,zc �, where F�n, z� �
Nsf�z� 2 n lnz and the saddle point zc is determined from
the equation ≠F�n, z��≠zjz�zc � 0. The maximum of
Nn corresponds to n � n̄ for which F�n, zc� is maximal.
Simple calculation shows that it appears when zc � 1 and

n̄
Ns

� z
df�z�
dz

Ç
z�1

. (12)

Expanding F�n, zc� near n � n̄ up to the second order and
computing all necessary integrals (the details will be given
elsewhere [5]), one finds that the total number of nodal
domains in the lattice with Ntot � 2N̄�E��p sites [cf. (3)]
near the maximum has Gaussian distribution where the
mean number of nodal domains n̄�E� and their variance
s2�E� are proportional to N̄�E�

n̄�E�
N̄�E�

�
3
p

3 2 5
p

� 0.0624 , (13)

s2�E�
N̄�E�

�
18
p2 1

4
p

3
p

2
25
2p

� 0.0502 . (14)

These relations are the main analytical result of this note.
They demonstrate that the distribution of nodal domains for
random functions is universal (Gaussian) and depends only
on the mean number of levels exactly as it is conjectured
in [1] with explicitly calculable constants.

In Fig. 4 we present the comparison between the nu-
merical calculation of the mean value and the variance for
the random functions (1) for different values of k plotted
as functions of N � N̄�E�. The dots and squares represent
the ratios n̄�N��N and s2�N ��N averaged over 100 reali-
zations. The smooth line passing through the dots is the
best fit in the form A 1 B�

p
N . The second term corre-

sponds to a contribution of boundary domains which need
special treatment (see [1,10]) but are unessential in the
semiclassical limit N ! `. Within statistical errors nu-
merical results agree well with the asymptotic predictions
(13) and (14) [12].

The close relation of our model with the bond perco-
lation model at the critical point p � 1�2 permits us to
114102-3
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FIG. 4. Mean values of the nodal domains (dots) and their
variances (squares) for random functions divided by N versus
N . The solid and dashed horizontal lines represent theoretical
asymptotic values (13) and (14), respectively.

apply all results of percolation theory (see, e.g., [7] and
references therein) for the description of nodal domains of
random functions.

In particular, the percolation theory predicts that the
distribution of the areas s of clusters (� connected nodal
domains) n�s� should have power behavior

n�s� ~ s2t , (15)

where the Fisher exponent t � 187�91 [7], p. 52.
In Fig. 5 we present the results of numerical calculations

of this quantity for random functions (1) with k � 115
which are in a rather good agreement with the percolation
theory prediction. In this figure the y axis represents the
number of nodal domains divided by n̄�E� as in (13). The
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FIG. 5. Distribution of nodal domain areas. The solid line has
the slope t � 187�91 predicted by the percolation theory.
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FIG. 6. The number of intersections of nodal domains with
square grid of size R. The dotted vertical line indicates the
mean lattice size. Circles and squares correspond, respectively,
to the big and small highlighted domains in Fig. 1. The dashed
line is the result of numerical calculations for the largest cluster
in our percolationlike model. The solid line shows percolation
theory prediction with the exponent D � 91�48.

area along the x axis is measured in the unit of smin �
p� j1�k�2, where j1 is the first zero of the Bessel function,
J0� j1� � 0, which according to the Rayleigh inequality
[13] is the smallest possible (with fixed k) area. After such
scaling the results for random functions with different k are
practically superimposed. The existence of a discrete set of
the smallest possible areas leads to pronounced oscillations
at small s in Fig. 5.

Another interesting quantity is the fractal dimension of
the nodal domains. In our percolation model it coincides
with the fractal dimension of critical percolation clusters
which is known to be equal to D � 91�48 [7], p. 52.

To find the numerically fractal dimension of a domain it
is convenient to put it on a grid of squares of side R and
count the number of crossing of the region with the grid.
When a ø R ø l where l is the size of the domain and
a is the size of the mean lattice: a � 2p�k, one expects

n ~ R2D (16)

and the exponent D is the fractal dimension.
In Fig. 6 we present numerical verification of this rela-

tion for the two nodal domains with k � 100 highlighted
in Fig. 1 and for the largest cluster in the proposed perco-
lationlike model with the number of sites given by (3). It
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is clearly seen that the fractal dimension of both domains
agrees well with numerical simulations in our percolation-
like model and the percolation theory prediction.

To summarize, we developed a simple percolationlike
model to describe the nodal domains for random func-
tions. Its main advantage is that all relevant quantities can
be computed analytically. By using the relations with the
Potts model we demonstrated that the number of nodal
domains has Gaussian distribution whose mean value and
variance are proportional to the mean staircase function
with explicitly calculated parameters (13) and (14). Our re-
sults clearly indicate that the distribution of nodal domains
for random functions is in the same universality class as
critical bond percolation which permits us to predict dif-
ferent critical exponents such as the Fisher exponent for the
distribution of the nodal domain areas (15) and its fractal
dimension (16).

Many different generalizations of the model considered
are possible. We mention only the possibility to use the
noncritical percolation model for the description of level
domains of random functions, C�x, y� � e, with e fi 0.
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discussing the paper [1] prior to publication. It is a pleasure
to thank O. Bohigas, J. Jacobsen, X. Campi, S. Nechaev,
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