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Collective Deceleration of Ultrarelativistic Nuclei and Creation of Quark-Gluon Plasma
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We propose a unified space-time picture of baryon stopping and quark-gluon plasma creation in ultra-
relativistic heavy-ion collisions. It is assumed that the highly Lorentz contracted nuclei are decelerated
by the coherent color field which is formed between them after they pass through each other. This
process continues until the field is neutralized by the Schwinger mechanism. Conservation of energy and
momentum allow us to calculate the energy losses of the nuclear slabs and the initial energy density of
the quark-gluon plasma.
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Ultrarelativistic heavy-ion collisions open the unique
possibility to study collective dynamical effects at the
partonic level. Before a collision the partons are con-
fined in individual hadron configurations and the Lorentz
contracted nuclei can propagate in the physical vacuum
without distortion. After the nuclei collide, thousands
of partons are quickly liberated as a result of multiple
soft-gluon exchange. The nuclei are transformed into two
partonic sheets which recede from each other, leaving be-
hind strong gluon fields [1]. Since color charges on the
sheets are distributed stochastically, they generate chro-
moelectric fields which are nonuniform in the transverse
plane. This field configuration may be envisaged as a
collection of densely packed color flux tubes or strings
stretched between the sheets; see Fig. 1(a). The energy
accumulated in the coherent field is taken from the kinetic
energy of the partonic sheets that causes their decelera-
tion. At later times the coherent fields are neutralized via
the Schwinger pair-production mechanism [2].

In this Letter we formulate a simple model to describe
the collective deceleration of ultrarelativistic nuclei by the
coherent field together with the creation of quark-gluon
plasma. Previous applications of the coherent field
picture for nuclear collisions [3] were focused on the
central rapidity region and ignored the back reaction of
the field on the motion of nuclei, which is essentially
an infinite-energy approximation. Also, in contrast to
microscopic string-based models such as FRITIOF [4]
and QGSM [5], which are formulated in momentum space
and deal only with hadronic secondaries, we describe the
space-time evolution of the coherent field and include
the possibility of the quark-gluon plasma formation. Our
model is similar in spirit to that proposed recently in
Ref. [6]. Some geometric and kinematic aspects of the
model are also similar to those introduced in Ref. [7].
All calculations here are performed in the center-of-
rapidity frame where the nuclei have initial rapidities 6y0.

We consider only beam energies so great that the nuclei
can be thought of as very thin, Lorentz contracted, sheets.
501-1 0031-9007�02�88(11)�112501(4)$20.00
Each sheet is divided into many small elements, or slabs,
of unit transverse area labeled by an index a where a � p
for the projectile nucleus and a � t for the target nucleus.
Each slab is characterized by a baryon number Na which
is assumed to be strictly conserved. This number can be

FIG. 1. Spatial view of a slab-slab collision at different times
specified in the text: (a) 0 , t , t0, (b) t0 , t , t�, and
(c) t $ t�. The black boxes represent the receding projectile
and target slabs. The horizontal straight lines indicate strings.
The dotted areas show the regions occupied by the quark-gluon
plasma.
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expressed through the slab thickness, la, defined in the rest
frame of the respective nucleus,

Na�b� � r0la�b� �
Z

dz ra�b, z� , (1)

where ra�b, z� is the density distribution in nucleus a, b is
the position of the slab in the impact parameter plane, and
r0 � 0.15 fm23 is the equilibrium nuclear density. We
assume that before and after nuclear overlap, which takes
place at t � 0, each slab propagates as a rigid body along
the beam axes z. The energy and momentum of slab a is
parametrized in terms of its proper energy per baryon ´a

and longitudinal rapidity ya (for details, see Ref. [7]),

Ea � Na´a coshya, Pa � Na´a sinhya . (2)

Because of hard parton interactions at t � 0 ´a may in-
crease as compared to its value in normal nuclei, ´0 � mN ,
the nucleon mass.

For simplicity we disregard here a short time delay
which is needed for the formation of the coherent field.
At t . 0 the trajectories of the projectile and target slabs,
zp�t� and zt�t�, are affected by the energy and momentum
losses for stretching the strings. If the string tension (en-
ergy per unit length) for individual strings is s, and the
number of strings per unit transverse area is n, then the
potential energy stored in strings is V�z� � nsjzp 2 ztj

(for definiteness we assume that zp . zt). Accordingly
the force or, in the present context, the longitudinal pres-
sure exerted by strings on slab a is 2≠V�≠za � 7ns,
and therefore Newton’s equation of motion has the form

dPa

dt
� 7ns . (3)

From here on the upper and lower signs correspond to a �
p and a � t, respectively. The net force acting on both
slabs is, of course, zero and the total energy of the slabs-
plus-field system is conserved. Realizing that the energy
lost by a slab while traversing distance dza is 7nsdza,
one can write the energy conservation equation as

dEa

dza
� 7ns . (4)

These equations are identical to those describing the mo-
tion of massive capacitor plates due to the action of a
uniform (chromo)electric field of a capacitor. This is not
surprising since the action of many collinear flux tubes, or
strings, is equivalent to the action of a uniform field E with
the same energy density ef � E2�2 � ns. It is important
to note that, in the absence of a chromomagnetic field, ef

is a Lorentz invariant quantity.
Using Eqs. (3) and (4) and the definition of slab velocity

dza�dt � Pa�Ea, one finds that PadPa � EadEa. This
means that the internal energies of the slabs do not change
in the course of deceleration, that is E2

a 2 P2
a � N 2

a´2
a �

const. The solution to Eqs. (3) and (4) for the initial con-
dition ya�0� � 6y0, za�0� � 0 are easily found to be

sinhya � 6

µ
sinhy0 2

t
la

∂
, (5)
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coshya � coshy0 7
za

la
, (6)

where la � �´ar0�ef �la is the characteristic deceleration
length. Eliminating ya from these equations one obtains
the slab trajectories.µ

coshy0 7
za

la

∂2

2

µ
sinhy0 2

t
la

∂2

� 1 . (7)

These are parts of hyperbolae shown in Fig. 2. Initially the
slab trajectories are very close to the light cone, but later
on they increasingly deviate from it. If nothing else were
to happen the slabs would reach their respective turning
points at t � la sinhy0, z � 6la�coshy0 2 1�, and then
reverse direction [see an example in Fig. 2(b)]. This is
the yo-yo type of motion well known in string models.
However, such dynamics is very unlikely in nuclear col-
lisions because of irreversible processes associated with
the string decay. When the strings become long enough

FIG. 2. Schematic space-time representation of a symmetric
(a) and asymmetric (b) slab-slab collision in the z-t plane. The
projectile and target slab trajectories are shown by thick solid
lines which start at the origin and terminate at points P and T,
respectively. In (b) the projectile slab is so much smaller than
the target one that it stops at the turning point S and reverses its
velocity. The quark-gluon plasma is produced at the portion of
the hyperbola t � t0 between points P and T (thick solid line).
Horizontal solid lines represent strings.
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quark-antiquark and gluon pairs can be produced from
vacuum via the Schwinger mechanism [2]. Their color
charges will screen the chromoelectric fields and eventu-
ally neutralize them. Here we want to avoid numerical
simulations of the complicated plasma-field dynamics [3]
which is not very well understood yet. Instead we adopt
a simplified picture assuming that the strings decay sud-
denly at a certain proper time t � t0 � 1 fm�c, where
t �

p
t2 2 z2. As a result, the partonic plasma is created

on the hyperbola t � t0; see Fig. 2.
As shown in Fig. 1(b), the structure of the system

changes dramatically at t . t0. Now the chromoelectric
fields are absent in the middle but still remain in the
regions adjacent to the projectile and target slabs. The gap
between these two regions is filled by the baryon-free par-
tonic plasma. As time progresses the boundaries between
the plasma and coherent fields move closer to the slabs,
and the gap expands. Let us write the energy-momentum
tensor of the plasma in the standard form

Tmn � �e 1 p�umun 2 pgmn , (8)

where e and p are the proper energy density and pres-
sure, um is the collective four-velocity of the plasma, and
gmn � diag�1, 21, 21, 21�. At its creation the plasma
is assumed to have negligible transverse velocity; collec-
tive transverse expansion develops at later times. Thus the
four-velocity can be chosen as um � g�1, 0, 0, y�, where y

is the longitudinal velocity and g � 1�
p

1 2 y2. Now we
can write equations expressing the conservation of energy
and momentum across the boundary between the plasma
and the chromoelectric field. In time dt, when the bound-
ary moves a distance dz, the energy per unit area subtracted
from the field is efdz. This change must be equal to the en-
ergy of a newly produced plasma slice dz: T00dz � efdz.
Using Eq. (8) this gives

�e 1 p�g2 2 p � ef . (9)

Since the field exerts a force ns � ef on the plasma
charges, the change of momentum in the plasma slice dz
is T03dz � efdt. This leads to

�e 1 p�g2y � ef
dt

dz
� ef

z

t
. (10)

In the last equality we have used the condition that the
boundary moves along the hyperbola

p
t2 2 z2 � t0 so

that tdt � zdz. The two equations (9) and (10) allow us
to find two quantities, e and y, characterizing the plasma at
t � t0. Especially simple results are obtained in the case
of free streaming, p � 0, which seems most appropriate
for the early stages of the plasma evolution. By dividing
Eq. (10) by Eq. (9) we get

y�
p

t2 2 z2 � t0� �
z
t

� tanhh , (11)

e�
p

t2 2 z2 � t0� �
ef

g2 �
ef

cosh2h
, (12)
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where the space-time (pseudo)rapidity h �
1
2 ln� t1z

t2z � has
been introduced. The first formula gives exactly the ve-
locity field postulated in Bjorken’s scaling hydrodynam-
ics [8], but here it follows from the conservation laws at
the plasma boundary. The second equation shows that
the global energy density T 00 � eg2, not the rest-frame
energy density e, should be constant at the hypersurface
t � t0 where the plasma is created. These predictions
should be used as the initial conditions for further kinetic or
fluid-dynamic simulations of the plasma evolution. Thus,
the introduction of the coherent field allows us to fill in the
missing time interval t0 in the Bjorken’s picture, as well
as the description of the baryon stopping.

The trajectories of the projectile and target slabs are
not affected by the string decay until they intersect the
hyperbola t � t0. It is clear that the region occupied by
the plasma expands faster than the receding slabs. Thus the
plasma eventually eats up the strings at time t�

a, as shown
in Fig. 2. At this time the chromoelectric fields are fully
neutralized and no new plasma is produced anymore; see
Fig. 1(c). Substituting za�t�

a� in Eq. (6) we obtain the final
gamma factors and rapidities of the slabs,

g�
a � coshy�

a � g0

"
1 2

t0

la

√
y0

vuut1 1
t

2
0

4l2
a

2
t0

2la

!#
,

(13)

where g0 � coshy0 and y0 � tanhy0. We see that g�
a is

entirely determined by a single combination of parameters,
t0�la � eft0�´ar0la. Since ´a � mN is not expected to
vary much in the course of the reaction and la is given by
the geometry, the combination eft0 is the only essential
parameter of the model which determines the rapidity loss
by the nuclei. It is quite natural that this is the same
quantity which gives the initial transverse energy of the
plasma at central pseudorapidity h � 0. As follows from
Eq. (12), the energy density of the plasma at h � 0 and
t � t0 is equal to ef . The total energy of the plasma in a
slice dz � t0 dh around h � 0 is obtained by integrating
ef�b� over transverse area of the reaction zone. This gives
for central collisions

dET

dh
�h � 0� � pR2�ef �t0 , (14)

where �ef � is the energy density of the chromoelectric field
averaged over the transverse area.

From Eq. (13) the condition of complete stopping �g� �
1� is t0�la �

p
2�g0 2 1�. As our estimates show, actual

values of t0�la are not far from this limit. Thus the
proposed scenario provides an efficient mechanism for
baryon stopping in ultrarelativistic heavy-ion collisions.
The baryon rapidity distribution is obtained by summing
up contributions of all pairs of slabs and integrating over
impact parameters. Our prediction is that, in the first
approximation, this will be a superposition of two peaks
centered at rapidities y�

p and y�
t given by Eq. (13). These

peaks will be smeared out due to the fluctuations in ef .
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The interaction with produced plasma will cause additional
drift and diffusion of the baryon charge in rapidity space.

A direct calculation of the energy density ef accumu-
lated in the chromoelectric field at the early stage of a
heavy-ion collision is problematic at present. Therefore,
for our estimates we use a simple parametrization which
is motivated by several model calculations,

ef � e0

µ
s

s0

∂a�2µ
NpNt

N2
0

∂b

. (15)

It is assumed that this parametrization applies above a cer-
tain c.m. energy squared, s $ s0. The exponent a � 0.3
follows from the low-x behavior of the nuclear structure
function or parton density [9]. The third factor relates the
number of strings produced to the number of binary par-
ton-parton collisions which is proportional to NpNt . For
convenience we have normalized Np and Nt by the mean
areal baryon density in the proton N0 � 0.4 fm22. In the
case of uncorrelated strings, as in elementary pp or pp̄
collisions, b � 1, while in the case of strong string over-
lap or percolation b � 0.5 [10]. We believe the values
b � 0.5 0.7 to be appropriate for heavy-ion collisions at
RHIC and LHC energies.

We now discuss phenomenological implications of
our model in the light of recent RHIC data for central
Au 1 Au collisions at

p
s � 130 GeV � y0 � 4.94�. As

found by the PHENIX Collaboration [11], the trans-
verse energy in the central pseudorapidity window is
dET �dhjh�0 � 600 GeV. For the free-streaming plasma
�p � 0� e�t�t � e�t0�t0, and dET �dhjh�0 is indepen-
dent of t. Then from Eq. (14) with pR2 � 145 fm2 we
immediately obtain �ef�t0 � 4 GeV�fm2. If the pressure
effects are fully included, p � e�3, the transverse energy
drops as t21�3, and in order to obtain the observed
dET �dh one should increase the initial value by a factor
�tf�t0�1�3 � 2, where t0 and tf are the initial and final
time of hydrodynamic expansion. For estimates we take
�ef �t0 � 6 GeV�fm2 which is in between these two
extremes. This value is in qualitative agreement with
results of microscopic simulations within the QGSM [5].

Now we can estimate the final rapidities of Au nu-
clei by considering the collision of representative slabs
with lengths lp � lt � 4R�3 averaged over the transverse
plane. Here we omit index a for simplicity. The proper
energy per baryon in partonic slabs is approximated by

mT �
q

m2
N 1 �pT �2, where �pT � � 0.5 GeV�c as mea-

sured by the STAR Collaboration [12]. To ensure energy
conservation at t � 0 we have reduced g0 by the factor
mN�mT . With these inputs t0�l � 4.1 and Eq. (13) gives
the final projectile and target rapidities y� � 61.9. This
corresponds to the final c.m. energy of about 3.5 GeV per
baryon compared to the initial energy of 65 GeV per nu-
cleon. The difference is transferred into the quark-gluon
plasma. This is a tremendous energy loss which can ex-
plain the rather high degree of baryon stopping observed
at RHIC. The measurement of the net-baryon rapidity
distributions would provide a crucial test of our model.
112501-4
Preliminary BRAHMS data show that the net-proton ra-
pidity distribution has a dip at y � 0 and two peaks at
y � 6�2 3� [13]. Extrapolating by Eq. (15) to the full
RHIC energy

p
s � 200 GeV we obtain y� � 2.1.

In conclusion, the collective dynamics of partonic slabs
has been studied within a simple model incorporating
strong chromoelectric fields generated early in the reac-
tion. Applying conservation of energy and momentum,
we have established a direct correspondence between the
rapidity shifts of the projectile and target nuclei and the
transverse energy of the produced quark-gluon plasma.
Using data from recent RHIC experiments we have
estimated the mean energy density accumulated in the
chromoelectric field and the resulting rapidity shift in the
net baryon distribution. The predicted strong deceleration
of the baryon as well as the electric charge makes it very
promising to search for photon bremsstrahlung at collider
energies (see Ref. [14], and references therein).
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