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We describe a class of relativistic models incorporating a finite density of matter in which spontaneous
breakdown of continuous symmetries leads to a lesser number of Nambu-Goldstone bosons than that
required by the Goldstone theorem. This class, in particular, describes the dynamics of the kaon con-
densate in the color-flavor locked phase of high density QCD. We describe the spectrum of low energy
excitations in this dynamics and show that, despite the presence of a condensate and gapless excitations,
this system is not a superfluid.
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The Goldstone theorem is a cornerstone of the phenome-
non of spontaneous breakdown of continuous global sym-
metries. It is applicable both to relativistic field theories
with exact Lorentz symmetry [1] and to most condensed
matter systems [2] where this symmetry is absent. How-
ever, there is an important difference between these two
cases. While in Lorentz invariant systems, the Goldstone
theorem is universally valid, it is not so in condensed
matter systems. For example, it does not apply to con-
densed matter systems with long range interactions [2].
From the technical viewpoint, the difference is connected
with a kinetic term, and derivative terms, in general, in a
Lagrangian density: while their form is severely restricted
by the Lorentz symmetry, it is much more flexible in sys-
tems where this symmetry is absent.

In this Letter, we describe the phenomenon of sponta-
neous symmetry breaking of continuous symmetries with
an abnormal number of Nambu-Goldstone (NG) bosons
taking place at a sufficiently high density of matter in a
class of models without long range interactions. Here by
“abnormal” we understand that the number of gapless NG
bosons is less than the number of the generators in the coset
space G�H, where G is a symmetry of the action and H
is a symmetry of the ground state. On the other hand,
as we shall see below, the degeneracy of the ground state
remains conventional: it is described by transformations
connected with all the generators from the coset space. It
is noticeable that this class of models describes a recently
suggested [3–5] scenario with a kaon condensate in the
color-flavor locked (CFL) phase of high density QCD [6].

We illustrate this phenomenon in a toy model with the
following Lagrangian density:

L � �≠0 1 im�Fy�≠0 2 im�F
2 y2≠iF

y≠iF 2 m2FyF 2 l�FyF�2, (1)

where F is a complex doublet field and y is a velocity
parameter. Since here the Lorentz symmetry is broken
by the terms with the chemical potential m, the velocity
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y # 1 in general. The chemical potential m is provided
by external conditions (to be specific, we take m . 0) [7].
The above Lagrangian density is invariant under global
SU�2� 3 U�1�. The SU�2� is treated as the isospin group I
and the U�1� is associated with hypercharge Y . The electric
charge is Q � I3 1 Y . This model describes the essence
of the dynamics of the kaon condensate [4] (see below).

When m , m, it is straightforward to derive the tree
level spectrum of the physical degrees of freedom. To this
end, we switch to the momentum space by decomposing
all four real components of the F field in plane waves.
Then, the quadratic part of the above Lagrangian density
takes the following form:

L �2��v, q� �
1
2
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�
2 �M
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f1

f2

∂
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∂
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where the real and imaginary parts of each component
of the doublet were introduced, FT � 1�

p
2 �f1 1 if2,

f̃1 1 if̃2�. Note that their Fourier transforms satisfy
f

�
i �v, �k� � fi�2v, 2�k� and f̃

�
i �v, �k� � f̃i�2v, 2�k�.

The matrices M and M̃ in Eq. (2) readµ
v2 1 m2 2 m2 2 y2q2 2imv

22imv v2 1 m2 2 m2 2 y2q2

∂
.

(3)

The dispersion relations of the particles are determined
from the equation Det�M � � 0. Explicitly, this equation
reads

��v 2 m�2 2 m2 2 y2q2� 3

��v 1 m�2 2 m2 2 y2q2� � 0 ; (4)

i.e., the particle’s dispersion relations are

v1 � ṽ1 � 6�
p

m2 1 y2q2 1 m� , (5)

v2 � ṽ2 � 6�
p

m2 1 y2q2 2 m� . (6)
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Of course, the positive and negative values of energy cor-
respond to creation and annihilation of excitations, respec-
tively. Henceforth we consider only positive eigenvalues:
for our purposes, no additional information is contained in
the eigenstates with negative eigenvalues.

Equations (5) and (6) imply that the particle spectrum
contains two doublets with the energy gaps m 1 m and
m 2 m, respectively. In dense quark matter, the first dou-
blet can be identified with �K2, K̄0� and the second one
with �K1, K0�. It is important to note that the chemical
potential causes splitting of the masses of particles and
their antiparticles. This point is crucial for reducing the
number of NG bosons in the asymmetric phase considered
below. The splitting is intimately connected with the fact
that C, CP, and CPT symmetries are explicitly broken
in this system. In second quantized theory, the complex
field F describes creation and annihilation of �K2, K̄0�
and �K1, K0�, respectively. This is quite unusual because
the corresponding dispersion relations of these two dou-
blets are not identical.

By studying the potential of the above model in tree ap-
proximation, we could check that the perturbative ground
state becomes a local maximum when m . m [see Eq. (2)
with v � q � 0]. At this point, the system experiences
an instability with respect to forming a condensate. In the
new phase, a vacuum expectation value, w0, of the field F

occurs:

F �

µ
0

w0

∂
1

1
p

2

µ
f1 1 if2

f̃1 1 if̃2

∂
. (7)
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This choice of the “neutral” direction of the vacuum ex-
pectation value corresponds to the conventional definition
of the electric charge, Q � I3 1 Y .

By requiring that the new ground state is a minimum of
the potential, we derive

w2
0 �

m2 2 m2

2l
(8)

for the vacuum expectation value of the field. In this
ground state, the initial SU�2� 3 U�1� spontaneously
breaks down to U�1�Q .

In the broken phase, the quadratic part of the Lagrangian
density looks formally the same as in Eq. (2). The matrices
M and M̃ , however, are different. In particular, the first
one, describing two charged states, is

M �

µ
v2 2 y2q2 2imv

22imv v2 2 y2q2

∂
, (9)

while the other, describing two neutral states, is

M̃ �

µ
v2 2 2�m2 2 m2� 2 y2q2 2imv

22imv v2 2 y2q2

∂
.

(10)

For the charged states, the dispersion relations are

v1,2 �
p

m2 1 y2q2 6 m . (11)

For the neutral states, the dispersion relations are given by
ṽ1,2 �

r
3m2 2 m2 1 y2q2 6

q
�3m2 2 m2�2 1 4m2y2q2 . (12)

All four dispersion relations are shown in Fig. 1. As is easy to check, one of the charged states with the relation

v2 �
p

m2 1 y2q2 2 m (13)

and one of the neutral states with the relation

ṽ2 �

r
3m2 2 m2 1 y2q2 2

q
�3m2 2 m2�2 1 4m2y2q2 , (14)
describe NG bosons, i.e., gapless excitations whose energy
goes to zero as q ! 0 (see Fig. 1). Indeed, in the far
infrared region, these relations take the following form:

v2 �
y2q2

2m
, (15)

ṽ2 �

s
m2 2 m2

3m2 2 m2
yq . (16)

No other gapless states appear. Thus, there are two gapless
NG bosons in the system. It comes as a real surprise.
Indeed, since the initial global SU�2� 3 U�1� symmetry
spontaneously breaks down to U�1�Q , one should expect
the existence of three NG bosons. Where is the third
one? To better understand the situation at hand, it is
instructive to consider the quadratic part of the potential
around the ground state configuration in the broken phase.
For the two sets of the fields, the corresponding quadratic
forms are read from 2M and 2M̃ , where v � q � 0
is substituted. The eigenvalues of such matrices are

j1,2 � j̃2 � 0 , (17)

j̃1 � 2�m2 2 m2� . (18)

Therefore, we see that the potential part of the action has
three flat directions in the broken phase, as it should. These
three directions would correspond to three NG bosons, re-
lated to the three broken generators of the original SU�2� 3

U�1�. The first order derivative terms in the kinetic part
of the action, however, prevent the appearance of one
charged, K2, gapless mode. This fact is intimately con-
nected with the point that the presence of the chemical
potential leads to splitting of the energy spectra of K2

and K1.
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FIG. 1. Dispersion relations of four particles in the broken
phase of the model in Eq. (1). The solid and dashed lines
represent the dispersion relations of charged and neutral states,
respectively. All quantities are given in units of m. To plot the
figure we used m � 0.5m and y � 1�

p
3.

Another noticeable fact is that the energy v2 of the K1

gapless mode in Eq. (15) is proportional to q2 rather than
to q. This implies that, despite the presence of the con-
densate, the Landau criterion for superfluidity fails in this
model [8]. Therefore, this system is not a superfluid.

This toy model illustrates a rather general phenomenon.
While in Lorentz invariant systems with spontaneous
breakdown of continuous symmetries the degeneracy of
the potential fixes the number of NG bosons being equal
to the number of generators NG�H in the coset space G�H,
in systems with a broken Lorentz symmetry the number of
gapless NG bosons can be lesser. The latter is connected
with a form of the kinetic term which can include first order
derivative terms. In the systems under consideration, the
chemical potential (leading here to such first order deriva-
tive terms) splits up energy gaps of charged particles and
their antiparticles both of which would be NG bosons oth-
erwise. On the other hand, a neutral NG boson, a partner
of a field with a nonzero vacuum expectation value, al-
ways survives. Therefore, the number of the gapless NG
bosons reduces by Nch, where Nch is the number of charged
(particle-antiparticle) pairs among the would-be NG
bosons. In the present model NG�H � 3 and Nch � 1,
and as a result there are only two (one neutral and one
charged) NG bosons.

The choice of the simple model in Eq. (1) was not
accidental in this Letter. It describes the essence of a
much more complicated dynamics of spontaneous sym-
metry breaking related to the kaon condensation in the
color-flavor locked phase of dense quark matter [4]. Let
us turn to it.

We start by repeating briefly the analysis of Ref. [4].
In the chiral limit, the ground state of the three flavor
dense quark matter corresponds to the CFL phase [6].
The original SU�3�c 3 SU�3�L 3 SU�3�R symmetry of
the microscopic action breaks down to the global “locked”
SU�3�c1L1R subgroup. The corresponding low energy ac-
tion for the NG bosons was derived in Refs. [9,10]. The
current quark masses break the original chiral symmetry of
111601-3
the model explicitly. As a result, nonzero gaps appear in
the spectra of the NG bosons, and they become pseudo-NG
bosons. Their dynamics could still be described by the
low energy action which, for sufficiently small current
quark masses, could be derived from the microscopic the-
ory [10]. By making use of an auxiliary “gauge” symme-
try, it was suggested in Ref. [4] that the low energy action
of Refs. [9,10] should be modified by adding a timelike
covariant derivative to the action of the composite field.

By neglecting a chemical potential of the electric charge,
the low energy effective Lagrangian density of Ref. [4] (in
Minkowski space) reads

Leff �
f2

p

4
Tr�=0S=0Sy 2 y2

p≠iS≠iS
y�

1
1
2

��≠0h0�2 2 y2
h0 �≠ih

0�2�

1 2c�det�M� Tr�M21Se
p

2�3 �i�fh0 �Ih 0

� 1 H.c.� ,
(19)

=0S � ≠0S 1 i
MMy

2pF
S 2 iS

MyM
2pF

, (20)

where pF is the quark Fermi momentum and M is a
quark mass matrix chosen to be diagonal, i.e., M �
diag�mu, md ,ms�. By definition, I is a unit matrix in
the flavor space, and S is a unitary matrix field which
describes the octet of the NG bosons, transforming under
the chiral SU�3�L 3 SU�3�R group as follows:

S ! ULSU
y
R , (21)

where �UL, UR� [ SU�3�L 3 SU�3�R . In Eq. (19), we
also took into account h0 field which couples to the octet
when the quark masses are nonzero. The NG boson, re-
lated to breaking the baryon number, was omitted, how-
ever. Its dynamics is not affected much by the quark
masses.

One should notice from the definition of the covariant
derivative in Eq. (20) that the combination of the quark
mass matrices meff � MMy�2pF produces effective
chemical potentials for different flavor charges. These
chemical potentials are of dynamical origin, and they are
unavoidable.

The presence of the effective chemical potential meff has
far-reaching consequences. In particular, if the mismatch
of the quark masses of different flavors is large enough
[e.g., ms * �D2mu�1�3], the perturbative CFL ground state
becomes unstable with respect to a kaon condensation.

The new ground state is determined by a “rotated” vac-
uum expectation value of the S field,

Sa�p� � exp�ial6� exp�ipAlA�

� exp�ial6�

3

µ
1 1

ipAlA

fp

2
pApBlAlB

2f2
p

1 . . .

∂
, (22)

where a is determined by requiring that the correspond-
ing ground state configuration is a global minimum of the
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potential energy. In the simplest case with mu � md , we
derive

cosa �
4cp2

Fmu�ms 1 mu�
f2

p �m2
s 2 m2

u�2
, 1 , (23)

where (see Ref. [10])

c �
3D2

2p2
and f2

p �
21 2 8 ln2

36
p2

F

p2
. (24)

The ground state with the kaon condensation which is de-
termined by Eq. (22) breaks the SU�2� 3 U�1�Y symmetry
of the effective action (19) down to U�1�Q. This is exactly
the symmetry breaking pattern that we encountered in the
toy model.

The derivation of the dispersion relations in the broken
phase with the kaon condensation involves rather tedious
calculations. Qualitatively, though, such a derivation is
similar to that in the model in Eq. (1). Additional diffi-
culties come from more complicated particle mixing. By
omitting the details, we present the results.

With the choice of the vacuum expectation value in
Eq. (22), the original 9 degrees of freedom (pA with
A � 1, . . . , 8 and h0) group into two decoupled sets:
�p1, p2, p4, p5� and �p3, p6, p7, p8 � h, h0�. The first
set of states contains all charged degrees of freedom (i.e.,
p6 and K6), while the second set contains neutral ones
(i.e., p0, K0, K̄0, h, and h0).

The dispersion relations for the charged degrees of free-
dom are straightforward to derive. Our analysis shows that
there is only one gapless NG boson in this set. In the far
infrared region q ! 0, its explicit dispersion relation reads

v �
q2

3m cosa�1 1 cosa�
, (25)

where m � �m2
s 2 m2

u��2pF . The analysis of the disper-
sion relations of the other set is more difficult. But it is
also straightforward to show that there is only one gapless
NG boson there as well. Moreover, for q ! 0, the explicit
dispersion relation reads

v �
sina

p
2 2 7 cos2a 1 9 cos4a

q
p

3
. (26)

We see that, as in the case of the simple model in Eq. (1),
there are only two gapless NG bosons, despite the fact that
there are three broken symmetry generators in the phase
with the kaon condensate. One should note, however, that
as in the model in Eq. (1), the effective potential obtained
from (19) has the required three flat directions. It is the
first order derivative terms that are responsible for produc-
ing a nonzero energy gap in the spectrum of one of the
charged bosons. The corresponding opposite charge part-
ner remains a gapless NG boson. It is crucial to note,
111601-4
though, that its dispersion relation behaves as v � q2 for
q ! 0. This implies that the criterion of superfluidity is
not satisfied in the phase of the dense quark matter with
kaon condensation [8].

As has been argued in Refs. [4,5], there is a good chance
that the phase with a kaon condensate may exist in a core
of compact stars. Since the spectrum of low energy exci-
tations in this phase derived in the present Letter is very
specific, implying in particular that the matter is not su-
perfluid, it could play an important role in detecting this
phase.

In conclusion, in this Letter the phenomenon of spon-
taneous symmetry breaking with an abnormal number of
NG bosons was described. It admits a simple and clear in-
terpretation. We expect that there exist wide applications
of this phenomenon that deserve further study. In passing,
we note that related systems in condense matter physics are
ferromagnets [11] and the superfluid 3He in the so-called
A phase [12].
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