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Phase Separation due to Quantum Mechanical Correlations
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Can phase separation be induced by strong electron correlations? We present a theorem that affirma-
tively answers this question in the Falicov-Kimball model away from half filling, for any dimension. In
the ground state the itinerant electrons are spatially separated from the classical particles.
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The Falicov-Kimball (FK) model [1] can be viewed as
a modification of the Hubbard (H) model [2] in which one
species of electrons (say spin down) has infinite mass. As
such, its relation to the latter is similar to the relation of the
Ising model to the quantum Heisenberg model [3,4]. Alter-
natively, it can be viewed as a model of itinerant electrons
and immobile ions. It possesses long range order at low
temperature in two or more dimensions at half filling, and
this checkerboard state (and higher-period generalizations
[5—8]) remain to date as the only examples of crystalliza-
tion into a perfectly ordered structure whose periodicity is
not that of the underlying lattice.

In this paper, we report a theorem on the existence of
phase separation in the ground state of the FK model,
away from half filling and for large repulsion between the
particles. “Phase separation,” or “segregation,” means that
the system splits into two large domains, one being occu-
pied by the classical particles, and the other by the quantum
particles. In the language of the H model, this would mean
segregation of spin up particles from spin down particles —
resulting in a ferromagnetic state. The question of whether
strong interactions can drive quantum (electronic) systems
to phase separate was posed over ten years ago for the FK
model [9] and the H model [10]. This work is a rigorous
proof of this long-standing conjecture for the FK model.
Further discussion of the relation between the FK and the
H models is given later.

Phase separation is not new in classical lattice models.
It is present in the Ising model, and in many other classical
models. It also occurs in the FK model at half filling for
some densities, as was proved in [7]. In these examples, it
is mainly a local phenomenon: interactions (or “effective
interactions” in the case of FK) tend to dislike boundaries,
and the state with minimum boundary is phase separated.

The electrons of the FK model are in delocalized
wave functions, and away from half filling their energy
cannot be written as a sum of local terms. While we
prove that the ground state energy is roughly propor-
tional to the boundary between occupied and empty
sites, the mechanism is nonlocal and genuinely quantum
mechanical.
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PACS numbers: 71.10.Hf, 71.28.+d, 71.30.+h

The FK Hamiltonian [1] is

H=- Z t(x — y)c:{cy + U Z clcxwx. (1)
x,yeQ xe)

Here, 1(x — y) = t(y — x) is the hopping coefficient be-
tween sites X and y; it is translation invariant, but may de-
pend on the direction (this allows consideration of general
Bravais lattices). ¢} and cy are creation and annihilation
operators for a spinless electron at site x, and wy = 1
or 0 is a classical variable that denotes the presence or the
absence of an ion at x. (Spin degrees of freedom have triv-
ial behavior and are left aside here.) ) C Z¢ is a finite d-
dimensional lattice, and U is the on-site repulsion between
the two species of particles. For any given configuration
w = {wy} of classical particles, the ground state for N,
electrons is determined by diagonalizing a one-body
operator given by the above Hamiltonian, and filling
in the lowest N, states. The main question is to find
which configuration w, with a given number of classical
particles N. = >, wy, minimizes the energy of the
electrons.

Our theorem states upper and lower bounds for the en-
ergy of N, electrons, for a given configuration w of the
classical particles. For orientation, let us consider first a
configuration where the sites devoid of classical particles
form a large, “compact” region. The expected energy of
the electrons is a bulk term that scales like the volume
of this region, and a correction that scales like its bound-
ary. Our main result is a proof of this conjecture for all
configurations, not only “nice” ones.

We need some notation. Let A = {x € Q:wy, = 0}
denote the set of empty sites for the configuration w,
and dA its boundary, 0A = {x € A,dist(x, A\ A) = 1}.
Their respective number of sites are |A| and [0A]. We
write E(N,,w) for the ground state energy of N, elec-
trons in the configuration w. An important quantity is n =
ne/(l — nc), where n, = Ne/|Q| and n, = Zx Wx/|Q|
are the densities for quantum and classical particles, re-
spectively. It represents the electronic density that would
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exist inside A, if all electrons live inside the domain devoid
of classical particles. Let e(n) be the usual kinetic energy
per site for noninteracting electrons with density » in the
thermodynamic limit [its expression is recalled below, see
Eq. 4)].

THEOREM: For all A we have upper and lower bounds,
e(n)|Al + a'(n)|0A] = E(N,,w) = e(n)|A|l + a(n,
U) oAl

For nearest-neighbor hoppings [i.e., t(x) # 0 if |x| =
1, t(x) = 0 otherwise], a(n,U) = a(n) — y(U), where
a(n) = a(l — n) is strictly positive for 0 < n < 1, and
y(U) satisfies limy—Uy(U) = 8d>.

The theorem clearly leads to segregation because low-
energy configurations must have a small boundary, i.e.,
there is a relatively small number of empty sites that are
neighbors of the classical particles. Furthermore, due to
the large repulsion, electrons are essentially located in the
empty domain. The boundary of the configuration of clas-
sical particles that minimizes the energy is smaller than
the minimum possible boundary times the ratio between
the upper and lower bounds a'(n)/a(n, U), which is a
large number.

One can state an explicit bound in the case of n small, or
close to 1. We assume that the (nearest neighbor) hoppings
satisfy | =< #(x) =< r,, and weset 1 = %ZM:I t(x). Then
for n < ng = |S4l/(47)%ty, we can choose

2d_3 1+(2/d
——— 2/ ). )

a(n) =
4|8 41243 td

Here, |Sy| is the volume of the d-dimensional unit sphere.
Since the hypercubic lattice is bipartite the Hamiltonian
has a symmetry, so that (1 — n) = a(n); the equation
above then leads to a bound for n > 1 — ng. The case
nop < n <1 — ng turns out to be considerably more dif-
ficult to handle, and our bound for a/(n) is much smaller;
see [11].

Our theorem is proved only in the case of the hypercubic
lattice Z¢. The results should also hold for other lattices,
however, the partial proof below is clearly very general.

Phase separation in the FK model for large U was con-
jectured in [9] and is in stark contrast to the situation
atn, = n, = %, where long-range order of checkerboard
type occurs, as was established in [3,4]. The theorem is
proved in [11], and extends results for d = 1 [12] and
d = % [13] to all dimensions, in particular to the dimen-
sions 2 and 3 that are of great physical relevance. Its proof
relies on a result of Li and Yau for the Laplace operator
in the continuum [14] (see also [15], theorem 12.3). We
explain this elegant proof below in the case of a lattice,
thereby proving the lower bound for U = o without the
boundary correction. To include this boundary correction
requires considerably more effort, and we refer to [11] for
further details.

Proof with a(n) = 0 and U = o: The ground-state
energy e(n) for noninteracting electrons with density n
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is found in the usual fashion: (i) define a Fermi energy

€f via
1

— dk = n, 3
m) fe(km ©)

with the band structure e(k) = — >, t(x)exp(—ik - x)
and (ii) do the integration

1 d
) L(k)SSF e(k)dk = e(n). 4)
The electrons are forbidden to lie on any site occu-
pied by the classical particles. Then the eigenfunctions
for a given configuration w are found by diagonalizing the
projection of the hopping matrix onto A. Let ¢g(y;w)
denote the orthonormal eigenvectors of the Hamiltonian
indexed by B8 = 1,...,|Q| — N, for the configuration w
with eigenvalues eg(w). We choose the ordering of the
labels such that €;(w) = e2(w) = ... = €a|-n,(w). We
also extend the definition of the eigenvectors to all of Z¢
setting ¢pg(y; w) = 0 for all yg (). The ground state en-
ergy for N, electrons and N, classical particles in the con-
figuration w is

N,
E(Ne,w) = D eglw), (5)
B=1

and the ground-state energy Eg,SA(Ne,NC) is the minimum
of Eq. (5) over all configurations that contain N classical
particles.

Using the definition of the eigenvectors allows us to
write the ground state energy as

N,
ENew) = > > dp(yiw)[—t(y — 2)ldp(z:w).
B=ly,ze7? 6
(

Now, we define the Fourier transform of the eigen-
functions by

felsw) = D e*Veu(yiw), (7

yEZ4
for every wave vector K in the Brillouin zone [0,27]¢. It
is well known that the energy can be expressed as
1
@2m)d
here and in the following the integral is over [0,27]¢ and
we introduced the density function

E(Nea w) =

f dke(K)p(k;w);  (8)

N,
pksw) = D | fa(k;w)l* ©)
B=1

The density function is obviously positive and is bounded
above by |A|. Indeed, we can write

NE . .
plkiw) =D > e *pp(zw)e Y hg(yiw):
B=lyze7?
(10)

this can be rewritten as
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p(k;w) = Z e K2 (z,y;w)eRY, (11)
y.ZEA

with p(z,y;w) = Zj/l’/;l qbg(z;w)qblg(y;w). The matrix
p 1s a positive semidefinite matrix bounded by 1 (it is the
projector onto the lowest N, eigenvectors). Hence,

p(ksw) = D [e*¥]2 = Al (12)

YEA

Furthermore, the density function satisfies a sum rule

(2717)01 f d'kp(kiw) = > ply.yiw) = No. (13)

YEA

One gets a lower bound for E(N,,w) by minimizing
the right side of (8) over all functions p satisfying 0 =
p = |A| and whose integral is N,. This is the “bathtub
principle,” see [15], theorem 1.14; the minimizer is
p(k) = |A| for {k: e(k) = er} and p(k) = 0 other-
wise, with er defined by Eq. (4). This amounts to filling
the lowest eigenvalues of the infinite lattice.

The proof of the upper bound for the energy proceeds
by forming an “average” Hamiltonian by translating and
rotating the original configuration w over a large but finite
subset of Z¢ (with periodic boundary conditions). Then
on a bipartite lattice one can show by concavity of the sum
of the lowest N eigenvalues of a matrix that the averaged
Hamiltonian provides an upper bound to the ground state
energy. But the magnitude of the averaged hopping is
determined by the size of the boundary, which eventually
yields the desired upper bound. Extending the proof above
to provide the lower bound is much more complicated and
relies on a detailed technical examination of the influence
of the boundary sites on the minimal density function for a
given configuration of classical particles. It is done in the
isotropic case (that is, a hypercubic Bravais lattice with
equal hoppings in all directions) in [11]; the extension
to the anisotropic case is straightforward, but numerous
details are modified, and have been verified.

The results of the theorem have a number of implications
for the FK model. It establishes that segregation occurs in
all dimensions (at 7 = 0 and U = =), illustrating the fact
that the existence of periodic ground states requires a subtle
reduction in energy relative to the segregated phase as the
interaction strength is made finite. Since the electronic
wave functions will be exponentially localized within A,
the results shown here can be extended to the case of fi-
nite interaction strength, as long as U is large enough. At
positive temperature it is so far impossible to claim rig-
orous results, except the following weaker one: the elec-
tronic free energy (for a fixed configuration of classical
particles) can be shown to be equal to the bulk free energy
plus a correction term that is proportional to the size of the
boundary. We expect that the coexistence of two phases
occurs at finite temperature for d = 2 as it happens in the
Ising model.
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It may be instructive to consider the U = o results for
the FK model as a guide for possible behavior in the H
model. To do this, we must first find a way to interpolate
between the two models. The simplest way is to consider
an asymmetric-hopping H model where the hopping for the
spin-up and the spin-down particles is different. Then the
H model results when # = | and the FK model when 7| =
0. Our rigorous results only hold for #; = 0. When ¢, is
increased the classical particles should still be packed, due
to the pressure of the electrons. When #| keeps increasing,
however, the classical particles should be in a phase with
density strictly less than 1. The central issue is whether
the reduction of the down-spin kinetic energy can be made
large enough, so that the phase separation disappears at a
critical value of #,. If this occurs for all electron densities,
there is no (saturated) ferromagnetism in the U =« H
model on the given lattice, however, one has a saturated
ferromagnetic ground state if the phase separation survives
[note the SU(2)-imposed degeneracy of the ferromagnetic
multiplet will occur precisely at t; = #]. It is well known
that ferromagnetism depends strongly on the geometry of
the lattice [16,17], so the occurrence of a critical value
of #; must also depend strongly on the geometry of the
lattice. We are unable to make any rigorous statements
about ferromagnetism in the H model here; actually, we
do not even know how to study the case with nonzero, but
small ¢.

A major question is what happens to the chessboard
phase when doped away from half filling? Consider the
line n, = n; the chessboard phase is present when these
densities are equal to %, and segregation takes place when

they differ significantly from % (depending on U). Itis not
clear what to expect for intermediate values. Two possible
scenarios are (i) the coexistence between chessboard and
segregated phases or (ii) the coexistence between other
periodic and segregated phases. Both scenarios could be
of physical relevance to stripe physics.

We conclude this Letter by a summary of our knowledge
of the phase diagram for zero temperature and d = 2 (see
Ref. [18] for a review). Recall that the particle-hole sym-
metry implies that the phase diagram is symmetric under
the transformation (n.,n.) — (1 — n.,1 — n¢) [3]. We
describe the situation only for n, + n. = 1.

In two dimensions, the ground states are periodic
when (i) (n,,n.) = (%,%) (they are of the chessboard
type). This was proved for all U in [3]; (i) nc = 1 — n,
(i.e., at half filling), and n, = ?, ;, i, 3, é, 121, é; also,
ne = WIH)Z with integers n. This holds for U large
enough (depending on 7, ), and follows from [5-7,19,20];
(i) nc =1 — n,, and the electronic density n, is a
rational number between % and % U must be larger than
a value that depends on the denominator of n, [8].

There is coexistence of two periodic phases when n. =
1-n, and n, € (1, &)U (1,2) U (3,7), for U
large [7,19]; and the ground states display segregation
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FIG. 1. Schematic phase diagram of the rigorous results for
the ground state of the 2D Falicov-Kimball model for large U.
The white dots and the white lines represent periodic phases; the
black lines are coexistences between different periodic phases;
the dark gray regions are segregated. There are no rigorous
results for light gray domains.

for Couﬂ(l —n)<n, <(l—- %)(1 — n.); this is
described here and proved in [11].

These results are illustrated in Fig. 1. The domain
CO;}St(l — n.) > n, should also be segregated.  The
central band that includes the line n, + n. = 1 should
be the host of numerous periodic phases and various
coexistences between periodic phases and empty or full
phases. This is supported by numerical simulations in
2D [21].

In one dimension, the ground states are periodic when
(n.,nc) = (3.3) [3] and when n, = 1 — n, (half filling)
and n. = p/q is a rational number (in an irreducible frac-
tion). The periodicity is g for U sufficiently large (depend-
ing on g) [12].

For finite U, there is numerical evidence for coexis-
tence of two periodic phases and free electrons when n, =
1 — ne, p/q < ne. < p'/q', and the periodic phases with
periods g and ¢’ are the only stable phases within the
above interval [22]; and the ground states display segrega-
tionwhenn, # 1 — n. and U is sufficiently large [11,12].
The canonical phase diagram for small U is even richer,
but our knowledge of it is very limited [23,24].

In conclusion, we have proved that the FK model
is phase separated whenever N, < |A| and U — oo
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This shows how strong correlations can lead to phase
separation.
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