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Effects of Circulating Energetic Ions on Sawtooth Oscillations

Shaojie Wang,1,2,* Takahisa Ozeki,2 and Kenji Tobita2

1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
2Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Ibaraki, 311-0193, Japan

(Received 13 June 2001; published 26 February 2002)

In contrast to the well-known result that the effects of the trapped energetic ions (TEI) on the internal
kink mode are due to the toroidal precession of the TEI, it is found that the effects of the circulating
energetic ions (CEI) on sawtooth are due to the toroidal circulation of the CEI. The effects of the CEI
on sawtooth oscillations are found to be different from the well-known purely stabilizing effects of the
TEI on sawtooth oscillations; the toroidal circulation of the co-CEI provides an additional sink of free
energy and stabilizes the mode; the toroidal circulation of the counter-CEI provides an additional source
of free energy and destabilizes the mode.
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Recent tokamak experiments have shown that sawtooth
oscillations can be stabilized by the cocirculating ener-
getic ions (co-CEI) produced by the negative-ion-based
neutral beam injection (NNBI) [1,2]. Here, “cocirculat-
ing” (“countercirculating”) means that the toroidal circu-
lation direction is the same as (opposite to) the direction
of the plasma toroidal current in tokamaks. It is widely
accepted that the sawtooth oscillations are related to the
internal kink mode instabilities [3–7]. The interaction be-
tween the energetic ions and the internal kink mode has
been extensively investigated [8–14]. It is well known
that the trapped energetic ions (TEI) can stabilize the in-
ternal kink mode [4,10–12]. The physical mechanism of
sawtooth stabilization by the TEI can be summarized as
follows. The work done on the TEI by the perturbation
can be divided into two parts: the adiabatic part which is
similar to the usual magnetohydrodynamic (MHD) fluid
response and the nonadiabatic part (dWk) which is the
kinetic (non-MHD) response due to the toroidal preces-
sion of the TEI. Since the real part of dWk�v ! 0� (v is
the frequency of the mode) is positive finite, the toroidal
precession of the TEI provides an additional sink of the
free energy, and thus the mode is stabilized. The physi-
cal mechanism of sawtooth stabilization by the co-CEI has
not been made clear. Previous theories [8–12] on the inter-
action between energetic ions and the internal kink mode
have ignored the nonadiabatic response of the circulating
energetic ions (CEI). Recently, the nonadiabatic response
(dWk) of the CEI has been investigated [13,14] in connec-
tion with the fishbone modes. dWk due to the crossing
resonance given in Ref. [13] does not provide any stabi-
lization effects of the CEI on sawtooth oscillations, since
its real part goes to zero when v ! 0. dWk due to the
toroidal circulation resonance given in Ref. [14] is valid
only when v � vz 0, with vz0 the toroidal circulation fre-
quency of the CEI evaluated at their birth energy.

Since sawtooth oscillations can degrade the core con-
finement of tokamaks, it is important to investigate the
stabilization of sawtooth oscillations. In a future tokamak
0031-9007�02�88(10)�105004(4)$20.00
fusion reactor, neutral beam current drive (NBCD) is ex-
pected to be the main technique to drive the plasma cur-
rent in the core region, and a population of co-CEI exists
in the core region when NBCD is applied. Clearly, it is
important to understand the physical mechanism of saw-
tooth stabilization by the co-CEI. The counterinjection of
neutral beams may also be used in controlling the plasma
rotation; therefore, it is of interest to investigate whether
the counter-CEI can stabilize the sawtooth oscillations as
the co-CEI and the TEI do.

Therefore, it is of significant interest to investigate the
nonadiabatic response of the CEI to the internal kink mode,
in the limit v ! 0. In this Letter, we show that dWk�v !

0� due to the toroidal circulation of the CEI is positive finite
for the co-CEI; thus the toroidal circulation of the co-CEI
provides an additional sink of free energy and stabilizes the
mode. We show that this is in qualitative agreement with
the recent experiments [1,2]. In contrast to the previous
theories on sawtooth stabilization by the TEI, an interest-
ing result found in this Letter is that the counter-CEI can
destabilize the sawtooth oscillations, since dWk�v ! 0� is
negative finite for the counter-CEI; the toroidal circulation
of the counter-CEI provides an additional source of free
energy. The physical mechanism of the effects of the CEI
on sawtooth oscillations is also different from the physi-
cal mechanism of sawtooth stabilization by the TEI; the
effects of the CEI on the mode are due to the toroidal cir-
culation of the CEI, while the previous TEI stabilization is
due to the toroidal precession of the TEI.

Consider a large-aspect-ratio tokamak plasma consist-
ing of core and hot components. The inverse of the aspect
ratio is ´ � r�R ø 1, with r (R) the minor (major) ra-
dius. We make the usual ordering, v�vA � O �´2�; vA �p

3 sR�VA is the shear Alfvén frequency; VA � B�pm0r
is the usual Alfvén speed, with B the equilibrium mag-
netic field and r the mass density. s is the magnetic
shear �r�q�dq�dr evaluated at the singular surface where
r � rs; q is the MHD safety factor; q�rs� � 1. The core
plasma beta value is ordered as bc � O �´2�. The beam
© 2002 The American Physical Society 105004-1
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ion beta value is also ordered as bh � O �´2�. Here the
beta value is the ratio between particle and magnetic pres-
sures. We also make the ordering vz0�vc � O �´2�, with
vc the gyrofrequency of the energetic ions.

With the effects of resistivity ignored, the stability an-
alysis of the internal kink mode is carried out by follow-
105004-2
ing the generalized variational principle [7,8]. The energy
functional is given by

D�v� � dI 1 dWMHD 1 dWk , (1)

dI � 2
1
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dh � E�2 2 3lB� �k ? �j� 2 ElB= ? �j� , (4b)

where v�i is the ion diamagnetic frequency [7]. d �B �
= 3 � �j 3 �B�. The subscript � (k) denotes the compo-
nent perpendicular (parallel) to the equilibrium magnetic
field �B. �b � �B�B. jk is the parallel equilibrium current
density. �j is the usual fluid displacement. E � y2�2;
l � m�E, m � y

2
��2B, with y the particle velocity. �k is

the curvature of �B. dI (dWMHD) is the usual MHD iner-
tial (potential) energy functional. p � pc 1 �pk

h 1 p�
h ��2,

�pk
h, p�

h � � mh

R
d3y EF�2�1 2 lB�, lB�. pc is the core

plasma pressure. F is the equilibrium distribution of the
beam ions. dWk is the nonadiabatic contribution of the
energetic ions. mh is the mass of the beam ion. �j� �
exp�2i�vt 2 z 1 u��, with z and u the toroidal and
poloidal angles, respectively. The nonadiabatic part of the
perturbed distribution of the hot component, df, is given
by the drift kinetic equation (DKE) [15]

�v 2 �z 1 i �u≠u�df � �v� 2 v�dh≠EF , (5)

with v� � q≠rF��vcr≠EF�. In writing the propagator
we have dropped the effects of finite radial drift of the
CEI, which is related to the crossing resonance inducing
the fishbone instability in the tangential injection case [13]
and is beyond the scope of this Letter.

The above equations form the basis of our stability an-
alysis, and they are valid in the limit v ! 0 for the CEI,
since the basic formalisms in Refs. [7,8] and Ref. [15],
which lead to Eqs. (1)–(4) and Eq. (5), respectively, do
not exclude the v ! 0 case for the CEI.

The usual minimization of dWMHD gives [5–8]

�j� � j0��er 2 i �eu�H�rs 2 r� exp�2i�vt 2 z 1 u�� ,
(6)

0 � = ? �j� 1 2 �k ? �j� ,

with j0 a constant. H is the Heaviside step function. �er

( �eu) is the radial (poloidal) unit vector. The normalized
energy functional is given by
ddWMHD 1 cdI � dWf 2 i�v�v 2 v�i��1�2��pvA� ,
(7)

dWf � 3´2
s�1 2 q0� �13�144 2 b2

ps� ,

where bps � 2´22
s �2m0�B2�

Rrs

0 �r�rs�2 dr dp�dr, and we

have performed the normalization ddWMHD � dWMHD�
�Vs�B2�m0� �j0�R�2�, with Vs the volume within the sin-
gular surface. ´s � rs�R0, R � R0�1 1 ´s�r�rs� cosu�,
q0 � q�r � 0�.

With the well-established generalized variational prin-
ciple, the stability analysis reduces to solving the DKE.
We assume that l � 0, yk � sy, with s the sign of yk

(s � 1 for the co-CEI, and s � 2 for the counter-CEI);
this is reasonable for tangential injection case [13,14].
Then using Eq. (6) and �k � ��eu sinu 2 �er cosu��R, writ-
ing dh � dh exp�2i�vt 2 z ��, we found

dh � 22E�j0�R�H�rs 2 r� ; (8)
�u � sy��qR�, �z � sy�R . (9)

Since all of the coefficients in Eq. (5) depend on
u only through the common factor 1�R � �1�R0� �1 2

´s�r�rs� cosu�, df should be u independent to O �´0
s�. To

O �´s�, we have df � df exp�2i�vt 2 z ��,
df � df0�r� 1 ´sdf

c
1�r� cosu 1 ´sdf

s
1�r� sinu . (10)

Using Eqs. (8)–(10) and the small ´s expansion of 1�R,
we obtained the lowest order DKE:µ

v 2 s
y

R0

∂
df0 � �v� 2 v�

≠F

≠E

R

R0
dh . (11)

The solution to the DKE is readily found:

df �
v� 2 v

v 2 sy�R0

R
R0

dh≠EF 1 O �´s� . (12)

In contrast to Ref. [14] where a similar solution is given
for v � y�R, Eq. (12) is also valid for v ø y�R. df
found here is responsible for the toroidal circulation of the
CEI (sy�R is the toroidal circulation frequency). The
previous method in solving the DKE [8–10] is based on
the small vtb expansion (tb is the bounce period of the
TEI), while our solution for the CEI is based on the small
´s expansion. To take into account the effect of toroidal
circulation of the CEI, it is more convenient to use our
small ´s expansion than to use the small vtb expansion.
Note that our method does not involve the bounce (tran-
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sit) average, as is different from the small vtb expansion
method. A more general but complicated method in solv-
ing the DKE can be found in Refs. [11,16]. We have veri-
fied that a similar solution to the DKE can be found for the
CEI by using the formalism given in Refs. [11,16], pro-
vided that Eqs. (8) and (9) are used and the effect of the
finite radial excursion of the CEI is dropped. It is not hard
to understand why df for the CEI is determined by their
toroidal circulation. Since dz�dt, du�dt, and dh (the en-
ergy exchange between the energetic ions and the mode)
are roughly independent of u for the CEI, their poloidal
motion is unimportant. So the dominant part of df for the
CEI is determined only by their toroidal circulation.

To proceed, we adopt the model slowing-down equi-
librium distribution for a population of CEI formed by a
purely co-CEI (l � 0, s � 1) component and a purely
counter-CEI (l � 0, s � 2) component. F � SsFs,

Fs �
ps

h �r�
p

2 pmhBEs
0

E23�2d�l�H�Es
0 2 E� , (13)

where Ss denotes summation for s � 1 and s � 2.
mhEs

0 � mh�ys
0 �2�2 is the beam ion birth energy, and

ps
h �r� �

R
d3y mhEFs is the pressure (energy density) of

the CEI of each component. We assume that the ion mass
is the same for the two components, but they can have
different birth energy and pressure. With Eq. (13) and
d3y � Ss

p
2 pdldEBE1�2�1 2 lB�21�2, substituting dh

and df into Eq. (4a) yields dWh � ddWk,

dWh � SsdWs
h0�1 1 O �vR�ys

0 �� � SsdWs
h0 , (14a)

dWs
h0 � s

2y
s
0

3´2
svcR

bs
hs , (14b)

bs
hs � 2�2m0�B2�

Z rs

0
dr qdps

h �r��dr , (14c)

where we have dropped the O �vR�y
s
0 � term, since v ø

y
s
0 �R for the current issue. We assume that dps

h �r��
dr , 0. For the co-CEI (b2

hs � 0), dWh � dW1
h0 3

�1 1 O �vR�y
1
0 �� � dW1

h0. Note that dWh�v ! 0� �
dW1

h0 . 0 for the co-CEI. It is the finite positive value
of dWh�v ! 0� that introduces the sawtooth stabilization
by the TEI [10] and by the co-CEI. dW1

h0 represents the
nonadiabatic part of energy spent to displace the co-CEI,
or an additional sink of the free energy. The mechanism
of sawtooth stabilization by the co-CEI identified here is
different from that by the TEI [10]; dWh�v ! 0� . 0
for the co-CEI is due to the toroidal circulation of the
co-CEI, while dWh�v ! 0� . 0 for the TEI is due to
the toroidal precession of the TEI. For the counter-CEI
(b1

hs � 0), dWh � dW2
h0�1 1 O �vR�y

2
0 �� � dW2

h0.
Note that dWh�v ! 0� � dW2

h0 , 0 for the counter-CEI.
2dW2

h0 represents the nonadiabatic part of free energy
or an additional source of free energy coming from the
counter-CEI due to the effects of their toroidal circulation.

The dispersion relation reads

dWf 1 dWh 2 i�v�v 2 v�i��1�2�pvA � 0 , (15)
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which is valid for dWf 1 dWh , 0. When jdWf 1

dWhj ¿ jv�i j��pvA�, it gives the ideal growth rate

gI � 2pvA�dWf 1 dWh� . (16)
Note that dWh � dWf � O �´2

s�. dW1
h0 . 0 . dW2

h0;
the co-CEI (counter-CEI) are stabilizing (destabilizing).

When dWf 1 dWh . 0, Eq. (15) should be modified
by including the effects of finite resistivity [3,10].

dWh 1 dWf 2 iG�v�v 2 v�i��1�2�pvA � 0 , (17)

with G � 8L29�4G��L3�2 1 5��4��G��L3�2 2 1��4�.
L � 2i�v�v 2 v�i� �v 2 v�e��1�3��s2S

21�3
M vA� is

evaluated at rs. v�e is the electron drift wave frequency
[3]. SM � �m0r2

s �hk���
p

3 R��VAs��, with hk the parallel
resistivity. The stability conditions for the resistive branch
of the mode are [10]

dWf 1 dWh . dWcrit � s3v
1�2
A ��p2SMjv�ij�1�2,

(18)
jv�ij . ghk � s2S

21�3
M vA .

For typical JT-60U experiments on sawtooth stabili-
zation by the co-CEI [1,2] produced by 350 keV deu-
terium coinjection into the hydrogen plasma, the main
parameters in the sawtooth-free period are q0 � 0.8,
s � 0.4, ´s � 1�12, R � 3.2 m, B � 3.5 T, bps � 0.5,
hk � 1.2 3 1028 V ? m, vA � 8 3 106�sec, SM � 107,
jv�i j � 1 3 104�sec; b

1
hs � 0.002, vcR�y

1
0 � 93; b

2
hs �

b
1
hs, and y

2
0 ø y

1
0 . We obtained dWf � 20.7 3 1023,

dWh � 1.9 3 1023. dWf 1 dWh � 1.2 3 1023 . 0;
the ideal branch of the internal kink mode is stabilized.
Further we estimated that ghk � 6 3 103�sec and
dWcrit � 2 3 1024. Therefore, Eq. (18) is satisfied, and
the resistive branch is also stabilized. The termination of
the sawtooth-free period observed in these experiments
may be due to the further decreasing of q0.

In conclusion, we have established a theoretical model
of sawtooth stabilization by the co-CEI, and we have
predicted sawtooth destabilization by the counter-CEI.
The toroidal circulation of the co-CEI (counter-CEI)
provides an additional sink (source) of the free energy
and consequently stabilizes (destabilizes) the internal
kink mode. Clearly, the effects of the CEI on sawtooth
oscillations are different from the effects of the TEI in two
aspects. First, the effects of the CEI are due to the toroidal
circulation of the CEI, while the effects of the TEI are due
to the toroidal precession of the TEI. Second, the effects
of the TEI on sawtooth are only stabilizing, while the
effects of the CEI on sawtooth can be either stabilizing
(co-CEI case) or destabilizing (counter-CEI case). The
key parameter for sawtooth stabilization by the co-CEI is
dW1

h0 � 12y
1
0 b

1
hs�3´2

svcR. Since NNBI-produced fast
ions generally have a higher velocity than PNBI (positive-
ion-based NBI)-produced fast ions, it is more efficient to
use NNBI than to use PNBI in stabilizing sawtooth by the
co-CEI. For the balanced tangential neutral beam injec-
tion case, b

1
hsy

1
0 � b

2
hsy

2
0 , we conclude from Eq. (14)

that dWh � 0. The stabilizing effect of the co-CEI
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(measured by b
1
hsy

1
0 ) is canceled by the destabilizing

effect of the counter-CEI (measured by b
2
hsy

2
0 ) for the

balanced injection case (b1
hsy

1
0 � b

2
hsy

2
0 ).

While the stabilizing effect of the co-CEI has been
corroborated by the recent tokamak experiments [1,2],
the destabilizing effect of the counter-CEI is not experi-
mentally known; there is a need for experiment to verify
the destabilization prediction. It should be noted that in an
isotropic plasma the overall kinetic contribution of the CEI
can be ignored in comparing to the kinetic contribution
of the TEI; however, if the CEI are unidirectional, their
kinetic contribution can be competitive with other MHD
effects. Finally, it is of interest to estimate how much neu-
tral beam (�1 MeV deuterium coinjection) power, in a
plasma with ITER-like parameters [17], would be needed
to roughly double the ideal sawtooth threshold when q0 �
0.8, ´s � 0.1. The main parameters are R � 8.14 m,
a � 2.80 m (the minor radius of the plasma boundary),
B � 5.68 T, Vp � 2000 m3 (the plasma volume), ts �
1 sec (the slowing-down time of the energetic deuterium
ion). Since the rate of energy transfer from the co-CEI
to the core plasma is Vp	ph
�ts, with 	ph
 the volume
averaged value of ph, from energy balance we have
	ph
 � tsPNBI�Vp , with PNBI the injection power.
Assuming ph�r� � ph0�1 2 �r�a�2�ah , we have bhs �
�1 1 ah� �1 2 �1 2 �rs�a�2�ah � �2m0	ph
�B2�. Using
Eqs. (7) and (14), we have

dWf 1 dWh � 3´2
s�1 2 q0� ��bcrit

ps �2 2 b2
ps� , (19a)

�bcrit
ps �2 �

13
144

1
1

3´2
s�1 2 q0�

2y0

3´2
svcR

bhs , (19b)

where bcrit
ps represents the ideal sawtooth threshold value of

bps. Without the co-CEI (bhs � 0), bcrit
ps � �13�144�1�2.

In order to double the ideal sawtooth threshold [to have
bcrit

ps � 2�13�144�1�2], assuming ah � 7, we found
that �38 MW is needed. If we assume ah � 6, then
�49 MW is needed. Note that the peaking factor of the
105004-4
profile of ph is ph0�	ph
 � �1 1 ah�. It is reasonable
to assume ah � 7 or ah � 6. A brief discussion of the
peaking factor of ph can be found in Ref. [14]. Therefore,
the stabilizing effect of the co-CEI is significant for
ITER-like burning plasmas.
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