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Goldstone’s theorem states that there is a massless mode for each broken symmetry generator. It
has been known for a long time that the naive generalization of this counting fails to give the correct
number of massless modes for spontaneously broken spacetime symmetries. We explain how to get the
right count of massless modes in the general case, and discuss examples involving spontaneously broken
Poincaré and conformal invariance.
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The proof of Goldstone’s theorem for internal sym-
metries is now standard material in many textbooks on
quantum field theory. Briefly stated, the theorem asserts
that, for a physical system with a global internal sym-
metry group G which is spontaneously broken down to
a subgroup H, there is a massless mode corresponding to
each broken generator [1]. In other words, the number of
Goldstone bosons is equal to the dimension dim�G�H� �
dim�G� 2 dim�H� of the coset space G�H. (For the pur-
poses of this paper, we will ignore subtleties such as the
Coleman-Mermin-Wagner theorem on Goldstone bosons
in two dimensions.) Moreover, if the global symmetry G
is gauged into a local symmetry group, some of the gauge
bosons become massive through the Higgs mechanism. In
this case, the number of massive bosons, which equals the
number of would-be Goldstone bosons, is still dim�G�H�.

The naive generalization of this counting fails to give
the correct number of massless modes for spontaneously
broken spacetime symmetries. There are at least two
well-known cases. One is the spontaneous breaking of ro-
tational and translational invariance due to, for example, an
extended object such as a domain wall or D-brane. In ex-
amples discussed in Refs. [2,3], there are massless modes
corresponding to only the broken translational generators.
The second example is the spontaneous breaking of con-
formal symmetry down to Poincaré symmetry. In four di-
mensions, the conformal group has 15 generators, whereas
the Poincaré group has 10 generators. Naive counting us-
ing dim�G� 2 dim�H� would give five Goldstone modes.
However, as was discussed in Refs. [4,5], there is actually
only one massless mode, corresponding to the dilatation
generator.

It is known that, in non-Lorentz-invariant theories, the
number of massless modes can be less than the num-
ber of broken generators even for internal symmetries,
and the rule for counting the massless modes is given in
Ref. [6]. We analyze a different problem—that of count-
ing massless modes in Lorentz-invariant theories with bro-
ken spacetime symmetries. Following a review of the two
well-known examples of spontaneously broken Poincaré
and conformal symmetries, we present the criterion for
counting massless modes, and show how the same result
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can be derived by applying the coset construction of spon-
taneously broken symmetries [5,7].

A large class of models with extra dimensions consider
quantum fields confined in a �p 1 1� dimensional hyper-
surface, which is generally called a p-brane, embedded in
a d-dimensional spacetime, with d . p. If the vacuum
state of a theory in d-dimensional flat space contains a
p-brane, the d-dimensional Poincaré group, denoted by
ISO�d 2 1, 1�, is spontaneously broken down to the �p 1

1�-dimensional Poincaré group ISO�p, 1�. [We use the
Minkowski metric hMN � �2, 1, 1, . . .�.] We will con-
sider this pattern of symmetry breaking; the spontaneous
breaking of Poincaré invariance by vortices or domain
walls are special cases.

The indices of the bulk spacetime will be denoted by
capital italic letters,M,N � 0, . . . ,d 2 1, the p-brane co-
ordinate indices by Greek letters, m, n � 0, . . . ,p, and the
remaining d 2 �p 1 1� of the bulk indices by lowercase
italic letters m, n � p 1 1, . . . ,d 2 1. The coordinates
of the bulk spacetime are XM , and those intrinsic to the
p-brane are xm. The translation generators PM can be di-
vided into two sets, Pm, which remain unbroken, and Pm,
which are broken by the p-brane. The Lorentz generators
JMN split into the unbroken generators Jmn , Jmn and the
broken generators Jmn. The position of a point x on the
p-brane is described by the bulk coordinates YM �x�. It
is possible to choose a gauge such that Ym�x� � xm and
the remaining components, Ym�x�, can be thought of as
the Goldstone modes corresponding to the broken trans-
lational generators [3], which describe the fluctuations of
the p-brane in the transverse directions. The number of
Goldstone modes is d 2 p 2 1, which is the same as the
number of broken translation generators Pm. There are no
additional Goldstone modes corresponding to the broken
Lorentz generators Jmn.

Next consider the spontaneous breaking of conformal
symmetry [4]. Any Lagrangian with a symmetry group H
can be made G invariant, G . H, by adding Goldstone
bosons so that it appears the symmetry G is spontaneously
broken. When G is taken to be the conformal group and H
the Poincaré group, although the broken generators are the
dilatation and special conformal transformations, we only
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need one massless mode s�x�, the dilaton, to make the
Lagrangian conformally invariant. (This is related to the
fact that a theory which is scale invariant is also conformal
invariant if a certain condition is satisfied, which is true for
a wide class of theories [8,9].)

As a simple example, consider a scalar f4 theory in four
dimensions which can be made conformally invariant by
adding the dilaton s�x� in the following way:

S �
Z

d4 x

∑
1
2

�≠m 1 f≠ms�f�≠m 1 f≠ms�f

1 Le24fs 2
1
2
m2f2e22fs 2

l

4
f4

1
1
2
e22fs≠ms≠ms

∏
. (1)

Note that, under a scale transformation x ! e2dx, the
field s transforms in a nonlinear way s�x� ! s�e2dx� 2

d�f and is indeed the Goldstone mode corresponding to
the dilatation. The Lagrangian Eq. (1) describes a theory
with spontaneously broken conformal symmetry, with one
massless mode coupling to the dilatation current. There are
no additional massless modes corresponding to the break-
ing of the special conformal transformations.

Assume that a symmetry group G with dim�G� gen-
erators TA (capital italic superscript) is broken down
to a symmetry group H with dim�H� generators Ta

(Greek superscript). The remaining dim�G� 2 dim�H�
generators Ta (lowercase italic superscript) are referred to
as the broken generators. Let f�r� be the symmetry break-
ing order parameter, Ta�f�r�� � 0, and Ta�f�r�� fi 0.
In the case of internal symmetry breaking, f�r� is a scalar
field, but for spacetime symmetry breaking, f�r� can be a
tensor field.

Consider first the case of a broken internal symmetry.
The massless modes are small amplitude long-wavelength
fluctuations of the order parameter,

df�r� � cA�r�TA�f�r�� � ca�r�Ta�f�r�� , (2)

where ca�r� is now a slowly varying function of r. The
generators Ta corresponding to the unbroken generators
do not generate massless excitations, since Ta �f�r�� � 0.
The remaining ca can be chosen independently, and the
number of independent modes is clearly the same as the
number of broken generators, dim�G�H�.

For spontaneously broken spacetime symmetries, the
number of massless modes is no longer equal to the num-
ber of broken generators. Massless modes are still given
by small amplitude long-wavelength fluctuations of the or-
der parameter [Eq. (2)], where ca can depend on the co-
ordinates r in the directions in which translation remains
unbroken. The number of independent massless modes is
the number of broken generators dim�G�H� minus nx , the
number of independent solutions to

ca�r�Ta�f�r�� � 0 . (3)
The key point is that nx $ 0: there can be nontrivial
solutions to Eq. (3) when ca and Ta both depend on r.
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The generators Ta are linearly independent, but the long-
wavelength fluctuations they produce need not be. The
number of Goldstone bosons is then dim�G�H� 2 nx , and
is reduced from the naive counting of broken generators.
Equation (3) can always be used to determine nx , even in
the case of internal symmetries. If the generators Ta are
internal generators, Eq. (3) has no nontrivial solutions, and
nx � 0.

It is easy to see how there could be nontrivial solutions
to Eq. (3), thus reducing the number of Goldstone modes.
Consider in three dimensions, a ground state with an infi-
nitely long, straight string parallel to the y axis, as shown
in Fig. 1. The three-dimensional Poincaré group is spon-
taneously broken to the two-dimensional Poincaré group.
A rotation in the x-y plane changes the orientation of the
string, whereas a translation in the x direction shifts the
string parallel to itself. The effect of these two symmetry
operations is apparently very different. Nevertheless, if we
perform a local translation on the string, in the sense that
the amount of translation is different at every point on the
string, the effect is to produce a bump on the string. This
bump can clearly be compensated by performing a local
rotation on the string (see Fig. 1).

The translational symmetry breaking of Px produces
massless modes,

df�r� � e�y�Px �f�r�� , (4)

where e depends only on y, the coordinate in the direc-
tion of the unbroken translation generator Py . (Goldstone
modes can only propagate in the direction of the unbro-
ken translations. They have a dispersion relation v�k�
with v�k� ! 0 as k ! 0. k is defined only in the trans-
lationally invariant directions. The broken translation Px
generates translational zero mode describing the fluctua-
tions of the string in the x direction.) Similarly, rotational
symmetry breaking gives the mode

df�r� � u�y�Jxy �f�r�� , (5)

where u depends only on y. Requiring these two fluctua-
tions to exactly cancel each other, we have

e�y�Px �f�r�� � 2yu�y�Px�f�r�� , (6)

FIG. 1. A ground state with a string breaks the three-
dimensional Poincaré group down to the two-dimensional
Poincaré group. Global translation and rotation on the string
are distinctly different, whereas the effects of local translation
and rotation on the string can be made the same.
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where we have used Py�f�r�� � 0 and the relation Jxy �
xPy 2 yPx valid for spinless particles. [More precisely,
one uses the relation Mmnl�x� � xnTml�x� 2 xlTmn�x�
between the stress tensor and the angular momentum den-
sity.] Equation (6) is clearly satisfied by choosing e�y� �
2yu�y�. Note that no solution would be possible if e and
u were both chosen to be constants. In this example Px
and Jxy do not generate independent massless excitations,
and nx . 0.

In the general case, acting on Eq. (3) with the unbroken
translation Pm gives

0 � Pmca�r�Ta �f�r�� � �Pm, ca�r�Ta� �f�r��

� 2i�≠mca�r�Ta 2 fmabca�r�Tb� �f�r�� , (7)

where we have written the commutator in the most general
form

�Pm,Ta� � ifmabTb 1 ifmabTb. (8)

The Tb are unbroken generators and thus annihilate the
vacuum. If the Ta are internal generators, �Pm,Ta� � 0,
and Eq. (7) implies that ca are constant, so that Eq. (3) has
no nontrivial solutions.

As long as there are some nonzero fmab , the nontrivial
solution satisfies

�≠mca�r� 2 cb�r�fmba�Ta�f�r�� � 0 . (9)

This is equivalent to saying that the Goldstone mode for
Tb and the gradient of the Goldstone mode for Ta are lin-
early dependent, so they do not generate independent mass-
less excitations. The nontrivial solutions to Eq. (9) reduce
the number of Goldstone bosons, and there is a one-to-one
correspondence between the nontrivial solutions of Eq. (9)
and Eq. (3). We will see that Eq. (9) also occurs in the
coset construction of the low energy effective theory.

Propagating Goldstone modes exist when there are
unbroken translational directions. It is also interesting to
consider configurations which break all the translational
invariance; for example a soliton such as a magnetic
monopole or Skyrmion. In this case, one has zero modes
that correspond to changes in the collective coordinates of
the soliton. The counting here is the same as in the case
of internal symmetry, and there is no relation between
the translational and rotational generators. We can see
this from Eq. (3) as well. We stressed that the spacetime
dependence of the coefficients ca�r� is on the coordinate
in the unbroken translation. When all the translations
are broken, ca�r� have no spacetime dependence and are
purely constants, Eq. (3) has no nontrivial solutions, and
the counting is the same as for internal symmetries.

To see how the counting of Goldstone modes works for
the two examples discussed earlier, let us write the full
conformal algebra:

�JMN , JPQ� � i�hNPJMQ 2 hMPJNQ
2 hNQJMP 1 hMQJNP� , (10)
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�JMN ,PQ� � i�hNQPM 2 hMQPN � , (11)

�JMN ,KQ � � i�hNQKM 2 hMQKN � , (12)

�PM ,KN � � 2iJMN 2 2ihMND , (13)

�D,KM� � iKM , (14)

�D,PM � � 2iPM , (15)

where D is the generator for dilatation, and KM are the
generators for special conformal transformations. If the
d-dimensional Poincaré group is broken down to the �p 1
1�-dimensional Poincaré group due to the presence of the
p-brane, we have, from Eq. (11),

�Pm, Jnm� �f�r�� � ihmnPm�f�r�� , (16)

where Jmm and Pm are the broken rotational and trans-
lational generators, respectively. Therefore Jnm and Pm
do not generate independent Goldstone modes. Similarly,
for the conformal group spontaneously broken down to the
Poincaré group, we have, from Eq. (13),

�PM ,KN � �f�r�� � 22ihMND�f�r�� (17)

and therefore all the modes for KN can be eliminated,
leaving only the dilaton.

Next we apply the coset construction for theories with
spontaneous symmetry breaking, introduced in Ref. [7] for
internal symmetries and modified in Ref. [5] for spacetime
symmetries, to the discussion of counting massless modes.
It is convenient to divide the unbroken generators, Ta, into
the unbroken momenta, Pm, and the rest, Vs. Consider the
group element

V�x, j� � eix
mPmeij

a�x�Ta , (18)

which transforms under the action of an element g of G as

geix
mPmeij

aTa � eix
0mPmeij

0a�x 0�Ta h�ja�x�,g� , (19)

where h�ja�x�, g� is an element of H depending on ja�x�
and g. If g belongs to the unbroken group H, the trans-
formation of xm and ja�x� becomes linear. For example,
if g is one of the unbroken Lorentz generators, it sim-
ply induces the usual Lorentz transformation x0 � Lx
and j0�x0� � S21�L�j�x�. However, under a translation
eiy

mPm , the spacetime coordinates always transform inho-
mogeneously, x0 � x 1 y, whereas j0�x0� � j�x�. [Re-
call that we can think of the spacetime coordinates xM

as parametrizing the coset (Poincaré)/(Lorentz).] This is
why Pm play the same role as other broken generators in
V�x, j�.
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In order to construct an effective action invariant under
the full symmetry G, we need to consider the Maurer-
Cartan one form

V21�x, j�dV�x, j� � i�vm
P Pm 1 va

TTa 1 vs
VVs� .

(20)

The one forms v
m
P and v

a
T transform covariantly and are

related to the spacetime vielbeins and the covariant deriva-
tives of the Goldstone field ja:

va
P � dxmea

m , (21)

va
T � dxmea

m �a ja. (22)

On the other hand, vV is the gauge field (sometimes called
the spin connection) associated with the unbroken group
H,

vs
V � dxmvs

Vm , (23)

and has the same transformation law as the gauge field
under local transformations of H.

In order to compute Eq. (20), we need the following
commutation relations, written in the most general form:

�Pm,Ta� � ifmanPn 1 ifmabTb 1 ifmasVs , (24)

�Ta,Tb� � ifabmPm 1 ifabcTc 1 ifabsVs . (25)

Therefore fman and fabm contribute to the spacetime viel-
beins [Eq. (21)], fmab and fabc contribute to the covariant
derivative of the Goldstone boson [Eq. (22)], and fmas and
fabs contribute to the spin connection [Eq. (23)]. Focus-
ing on the Goldstone field, and working at linearized order,
we have

va
T � �≠mja 2 fmbajb�dxm. (26)

The effective Lagrangian contains V21dV acting on �f�,
so that the Goldstone boson fields occur via

va
TT

a�f� � �≠mja 2 fmbajb�dxmTa�f� . (27)

Here we see the possibility of expressing some of the
Goldstone modes in terms of derivative of other Gold-
stone modes by setting Eq. (27) to zero, which reduces the
number of independent Goldstone modes that occur in the
effective Lagrangian. Note that the linearized covariant
derivative is exactly Eq. (9), the condition for nontrivial
solutions to Eq. (3).

For the case of a p-brane breaking the Poincaré group
spontaneously, we chose to write V as

V � eix
mPmeiY

a�x�Paeiu
nb�x�Jnb . (28)

The covariant derivative of the Goldstone mode Ya�x� is

vb
P � �R�u�bm 1 R�u�ba≠mY

a�dxm, (29)

where
101602-4
�R�u��MN � �eiu
nbSnb �MN , (30)

�Snb�MN � i�dn
MdbN 2 dn

NdbM � . (31)

The covariant derivative of the Goldstone field Ya�x� in-
volves Ya as well as unb�x�, the Goldstone field for the
broken rotational generators. It is therefore possible to
solve for unb�x� in terms of the derivatives of Ya�x� by
setting the covariant derivative to zero.

For the spontaneous breaking of conformal symmetry,
we follow Ref. [5] and write

V � eix?Peiw�x�?Keis�x�D. (32)

The covariant derivative of the dilaton is

vD � �≠ms 1 2wm�dxm. (33)

Again we can replace the field wm everywhere by
2�1�2�≠ms by setting the covariant derivative of the
dilaton field to zero. The fact that one can eliminate some
Goldstone fields this way is called the inverse Higgs effect
in Ref. [10].

As a final note, it should be clear that choosing a dif-
ferent parametrization of the coset space G�H would give
a different relation among the various Goldstone modes.
Nevertheless, the number of massless modes is determined
by the nonvanishing fmab in Eq. (24), and the number of
Goldstone modes is independent of the parametrization of
the coset.
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