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Hall-Drift Induced Magnetic Field Instability in Neutron Stars
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In the presence of a strong magnetic field and under conditions as realized in the crust and the super-
fluid core of neutron stars, the Hall drift dominates the field evolution. We show by a linear analysis
that, for a sufficiently strong large-scale background field depending at least quadratically on position in
a plane conducting slab, an instability occurs which rapidly generates small-scale fields. Their growth
rates depend on the choice of the boundary conditions, increase with the background field strength, and
may reach 103 times the Ohmic decay rate. The effect of that instability on the rotational and thermal
evolution of neutron stars is discussed.

DOI: 10.1103/PhysRevLett.88.101103 PACS numbers: 97.60.Jd, 95.30.Qd, 97.10.Ld, 97.60.Gb
In the presence of a magnetic field the electric conduc-
tivity becomes a tensor and, what is more, two nonlinear
effects are introduced into Ohm’s law: the Hall drift and
the ambipolar diffusion. However, if the conducting mat-
ter consists of electrons and one sort of ions and no neutral
particles take part in the transport processes, the ambipolar
diffusion is absent [1]. Such a situation is realized, e.g., in
the crystallized crusts of neutron stars and/or in their cores
if the neutrons are superfluid, but the protons are normal
and the electrons may therefore collide with protons but
effectively not with the neutrons.

The effect of the Hall drift on the magnetic field evo-
lution of isolated neutron stars has been considered by
a number of authors (see, e.g., [2–8]). They discussed
the redistribution of magnetic energy from an initially
large-scale (e.g., dipolar) field into small-scale components
due to the nonlinear Hall term. Though the Hall drift is
a nondissipative process, the tendency to redistribute the
magnetic energy into small scales may accelerate the field
decay considerably.

Indeed, when starting with a large-scale magnetic field,
the Hall cascade derived in [3] will generate small-scale
field components down to a scalelength lcrit, where the
Ohmic dissipation begins to dominate the Hall drift. Con-
sidering numerically the evolution of a magnetic field in
a sphere taking into account spherical harmonics up to a
multipolarity l � 5, Shalybkov and Urpin [6] concluded
that the inclusion of higher harmonics will not influence
the magnetic evolution. This conclusion is what we want
to put in question.

In some of the above-mentioned investigations, numeri-
cal instabilities are reported if either too strong nonuni-
formities of the field occur [7] or the initial field is too
strong [5]. Also, when considering the thermomagnetic
field generation in the crust of young neutron stars [9],
where small-scale modes are the first ones to be excited,
numerical instabilities occurred caused exclusively by the
Hall drift.

Here we want to show that all the observed instabili-
ties are very likely in their essence not of numerical ori-
gin but have physical reasons. In presuming that, we felt
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strongly supported by the close analogy of the linearized
field evolution equation including Hall drift to the induc-
tion equation including the so-called �v 3 �j effect intro-
duced by Rädler [10]. Within the framework of mean-field
dynamo theory (see, e.g., [11]), he demonstrated the pos-
sible occurrence of magnetic instabilities in an electrically
conducting fluid if a shear flow acts together with an elec-
tromotive force (emf) perpendicular to the current density
�j ~ curl �B.

To prove the existence of a Hall-drift induced instabil-
ity, we employ a simplified model: We assume spatial
constancy of the conductive properties of the matter and
show that, under special conditions with respect to the
(large-scale) background field’s strength and geometry, an
instability occurs which quickly transfers magnetic energy
from the background field to small-scale perturbations. We
present the result of a linearized analysis which returns
only growth rates and the spatial structure of the unstable
field modes. Only a fully nonlinear analysis is able to yield
saturation values of the excited small-scale modes.

The instability may work in different physical systems
but is probably most efficient in modifying the field decay
in compact astrophysical bodies. Then it will act only
during an episode of the field decay, which unavoidably
leads to a zero field. This episode, however, may have
observable consequences.

In the absence of motions and of ambipolar diffusion,
the equations which govern the magnetic field are

��B � 2ccurl

µ
c

4ps
�curl �B 1 vBte�curl �B 3 �eB��

∂
,

div �B � 0, (1)

where c is the speed of light, s is the electric conductivity
caused by electrons, te is the electron relaxation time, and
vB � ej �Bj�m�

ec is the electron Larmor frequency, with e
being the elementary charge and m�

e the effective mass of
an electron. �eB is the unit vector in the �B direction. An
estimate of the two terms on the right-hand side of (1)
gives rise to the supposition that the Hall drift becomes
important only if vBte . 1.
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Using standard arguments, one can immediately state
that in the absence of currents at infinity the total energy
of any solution of (1) is bound to decrease monotonically to
zero since the Hall term ~ curl �B 3 �eB is unable to deliver
energy (nor to consume it).

For simplicity, we assume the conductive properties of
the matter to be constant in space and time; that is, we
assume constant s and te�m�

e. Thus, the induction equa-
tion can be rewritten in dimensionless variables such that it
no longer contains any parameter and the evolution of the
magnetic field is solely determined by its initial configu-
ration �B� �x, 0�. For that purpose, we normalize the spatial
coordinates by a characteristic length L of the model (for a
neutron star it could be, e.g., its radius or the thickness of
its crust), the time by the Ohmic decay time 4psL2�c2,
and the magnetic field by BN � m�

ec�ete. The governing
equations in these dimensionless variables read

��B � D �B 2 curl�curl �B 3 �B�, div �B � 0 , (2)

where the differential operations have to be performed with
respect to the now dimensionless spatial and time coordi-
nates x, y, z, and t, respectively.

Stepping now into the search for instabilities, we first
have to define a proper reference state �B0. In order to
avoid difficulties in defining the term “instability” and to
facilitate the calculations, we assume �B0 to be constant in
time. Consequently, we are forced to assume the existence
of an additional emf which prevents �B0 from decaying.
Although appearing to be very artificial, we find this mea-
sure to be legitimate as long as the results of the stability
analysis are applied to real physical situations obeying the
constraint that the background field �B0 is changing only
slightly during the considered period of time.

Linearization of (2) about �B0 yields
��b � D �b 2 curl�curl �B0 3 �b 1 curl �b 3 �B0� ,

div �b � 0 ,
(3)

describing the behavior of small perturbations �b of the
reference state.

With respect to the magnetic energy balance, Eq. (3)
shows a remarkable difference to Eq. (2). Along with the
term curl �b 3 �B0 which is again energy conserving, now
as a second Hall term curl �B0 3 �b occurs which may well
deliver or consume energy (to/from �b) since in general the
integral

R
V �curl �B0 3 �b� ? curl �b dV will not vanish. This

reflects the fact that the linearized Hall-induction equation
describes the behavior of only a part of the total magnetic
field. Actually, perturbations may grow only on the ex-
pense of the energy stored in the background field.

Considering (3), we can determine a scale below which
the Ohmic dissipation dominates the Hall drift. Estimating
jcurl �B0j and jcurl �bj by B̄0 and b̄�l, respectively, we find
the critical scale of �b to be lcrit & 1�B̄0, which is denor-
malized lcrit & L��vB̄0 te�, identical with the expression
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derived in [3] considering the Hall cascade in analogy with
the turbulent flow of an incompressible fluid.

Let us now specify the geometry of our model and the
background field. We consider a slab which is infinitely
extended both into the x and the y directions but has a
finite thickness 2L in the z direction. The background
field is assumed to be parallel to the surface of the slab
pointing, for instance, in the x direction and to depend
on the z coordinate only, i.e., �B0 � f�z��ex . Guided by
the conditions under which the above-mentioned magnetic
instability [10] may work, we conclude that f�z� has to be
at least quadratic, thereby ensuring that the first term in (3)
is able to play the role of the shear flow, the second the role
of the �v 3 �j term. Note that by this choice curl �B0 3 �B0
represents a gradient. Thus the unperturbed evolution of
the background field is not at all affected by the Hall drift;
in the absence of an emf it would decay purely Ohmically.

Further on, we decompose a perturbation �b into a
poloidal and a toroidal component, �b � �bp 1 �bt, which
can be represented by scalar functions S and T , respec-
tively, by virtue of the definitions

�bp � 2curl� �ez 3 =S�, �bt � 2�ez 3 =T , (4)

ensuring div �b � 0 for arbitrary S, T .
For the sake of simplicity, we will confine ourselves to

the study of plane wave solutions with respect to the x and
the y directions, thus making the ansatzΩ

S
T

æ
��x, t� �

Ω
s
t

æ
�z� exp�i �̃k �̃x 1 pt� , (5)

where �̃k � �kx, ky�, �̃x � �x, y�, and p is a complex time
increment. It guarantees as well the uniqueness of the
poloidal-toroidal decomposition since, from ~D�S, T � � 0,
it follows �S, T� � 0 with ~D being the two-dimensional
lateral Laplacian (see [12]). With (5) we obtain from (3)
two coupled ordinary differential equations:

pt 2 t00 1 k̃2t � ikxf�s00 2 k̃2s� 2 ikxf 00s ,

ps 2 s00 1 k̃2s 2 ikyf 0s � 2ikxft ,
(6)

where dashes denote derivatives with respect to z. To-
gether with appropriate boundary conditions, Eqs. (6) de-
fine an eigenvalue problem with respect to p.

We consider two types of boundary conditions (BC):
For the vacuum condition, we assume curl �B � �0 outside
the slab and require continuity of all components of �B
across the boundary. For the perfect-conductor condition,
an electric field must be prevented from penetrating into
the region outside the slab; that is, the normal magnetic
and tangential electric field components must vanish at the
boundary. In terms of the scalars s and t, this means �s� �
�s0� � t � 0 for the vacuum condition and s � t0 � 0 for
the perfect conductor condition where �?� denotes the jump
across a boundary. For t0 � 0 to be valid the vanishing of
�B0 at the boundary is required. Making use of the vacuum
solutions vanishing at infinity for either halfspace, z $ 1
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and z # 21, respectively, the vacuum boundary condition
for s can be expressed as s0 � 7k̃s for z � 61, with

k̃ � j �̃kj.
Obviously, three distinguishable combinations of the

boundary conditions are possible: vacuum on either side
(VV), perfect conductor on either side (PP), and vacuum
on one side and perfect conductor on the other side of the
slab (PV). The latter choice comes closest to neutron star
conditions if we think of the crust being neighbored upon
a superconducting core on the one side and a region with
very low conductivity on the other side. The VV bound-
ary condition may in turn be appropriate for an accretion
disk. Since both the PV and the VV BC were to be consid-
ered, we choose sufficiently curved background field pro-
files, which obey them, i.e., f�z� � B0�1 1 z� �1 2 z2�
and f�z� � B0�1 2 z2� for BC � PV and BC � VV, re-
spectively.

For certain ranges of the wave numbers kx , ky and for
B0 * 3, we found eigenvalues p with a positive real part,
i.e., exponentially growing perturbations. The dependence
of the growth rate ℜ�p� on the wave numbers for B0 �
1000 and BC � PV is shown in Fig. 1.

Figure 2 shows the dependence of growth rate and wave
number kx of the fastest growing mode on B0.

An interesting feature is that the maximum growth rates
occur for all B0 considered at ky � 0. Of course this asym-
metry is due to the choice of the background field: Once
it was chosen parallel to the y direction, the maximum
growth rates would occur at kx � 0. Another interesting
result is the dependence of the growth rate on the boundary
conditions. BC � PV yields the largest values, by a factor
1.6–3 larger than for BC � VV, while BC � PP results
in very small growth rates. Note that the most unstable
eigenmodes are always nonoscillatory, though oscillating
unstable ones exist.

Evidently, the obtained growth rates are in agreement
with the constraint, formulated above: In comparison with
the background field decay, the growth of the most unstable

FIG. 1. Growth rate as a function of kx and ky for B0 � 1000
and BC � PV. Negative values were set to zero.
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perturbations is a fast process; thus we may consider it as
“episodically unstable.”

With respect to the asymptotic behavior s ! ` for a
fixed (unnormalized) background field, one has to note
that the time increment p is normalized on the Ohmic
decay rate (~ s21). From Fig. 2 it can be inferred ℜ�p� ~

B
q
0 , q , 1 for B0 $ 100, which means that in the limit

of negligible dissipation the growth rate in physical units
tends to zero.

Figure 3 shows the eigensolutions �s, t� �z� of the fastest
growing mode for three different values of B0 and BC �
PV. One can observe that with increasing B0 the toroidal
field becomes more and more small scaled and concen-
trated towards the vacuum boundary. In contrast, the cor-
responding poloidal field remains large scaled.

The magnetic field structure of the fastest growing mode
for B0 � 2000 and BC � PV is shown in Fig. 4.

Clearly, any assignment of the results gained with the
help of a very simplified model to astrophysical objects
has to be done with great care. Even when accepting the
plane layer as a reasonable approximation of a neutron
star’s crust, one has to concede that the very specific pro-
files of �B0 assumed above may merely exemplify the field
structure in the crust.

An acceptable approximation of the radial profile of a
dipolar crustal field as given, e.g., in [13] will, in general,
have to allow for a linear part and nonzero values at the
boundaries. Moreover, the strong dependence of the con-
ductive properties on the radial coordinate should anyway
be taken into account.

To get an impression of possible consequences for the
evolution of neutron stars, we now simply assume that
the real �B profile is sufficiently “curved” (i.e., its second
derivative is big enough) and associate the parameter B0

with a typical value of the field.
Assuming further electric conductivity and chemical

composition to be constant, s � 5 3 1026 s21 and the

FIG. 2. Growth rate and wave number kmax
x of the fastest

growing mode as functions of B0. Solid lines and dashed lines
correspond to BC � PV and BC � VV, while thick and thin
lines correspond to growth rates and kmax

x , respectively.
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FIG. 3. Moduli of �s, t� �z� of the fastest growing mode; BC �
PV. Solid lines, dash-dotted lines, and dashed lines refer to
B0 � 2000, B0 � 100, and B0 � 10, respectively.

relative atomic weight A�Z � 25, respectively, we find
the normalization field at a density r � 1014 g cm23 to
be 7 3 1010 G (see, e.g., [13]). That is, for typical (inner)
crustal magnetic fields ranging between 7 3 1012G and
1.4 3 1014G we find a B0 between 100 and 2000 and the
e-folding time of the most rapidly growing unstable mode
to be 0.0035 and 0.0003 times the Ohmic decay time,
respectively. Thus, an initial perturbation will quickly
evolve to a level at which the linear analysis is no longer
feasible, that is, at which it starts to drain a remarkable
amount of energy out of the background field.

We want to emphasize again that a sufficient curvature of
the background field profile is a necessary condition for the
occurrence of an unstable behavior. Therefore neither the
derivation of the well-known helicoidal waves (whistlers)
nor its modification presented in [8] could reveal it because
a homogeneous background field was assumed there.

With even more care, we may speculate about possible
observational consequences. The instability discussed here
may perhaps act effectively in the crust of not too young
(age t / 105 yr) neutron stars. For those stars, the small-
scale field modes initially generated or existing in the crust
have already been decayed and the magnetic field is con-
centrated almost completely in the large-scale, for instance,
dipolar mode. Simultaneously, in the process of cooling,
the coefficient m�

ec�ete becomes smaller and smaller un-
til the nonlinear Hall term in (2) dominates the linear
Ohmic term. From that moment the Hall instability may
rise small-scale modes down to scale lengths *lcrit on ex-
pense of the dipolar mode. This would lead to a change
of the spin-down behavior of isolated neutron stars. Devi-
ations from the “standard” rotational evolution will occur
when the dipolar field decreases rapidly due to the instabil-
ity. This may lead to the observation of braking indices
n . 3 [14] during the action of that instability. Another
possible observational consequence is due to enhanced
joule heating, which will keep the neutron star warmer than
standard cooling calculations predict after an age critical
for the onset of the Hall instability. Third, the strong small-
scale field components cause strong small-scale Lorentz
forces which may be able to crack the crust. This could be
101103-4
FIG. 4. Field structure of the fastest growing mode for B0 �
2000 and BC � PV. Arrows: bx,z . Grey shading, value of by :
dark— into the plane; light —out of the plane.

observable in glitches or, depending on the available en-
ergy, even in gamma- and x-ray bursts [15].
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