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Using Novel Variable Transformations to Enhance Conformational Sampling
in Molecular Dynamics
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One of the computational “grand challenges” is to develop methodology capable of sampling confor-
mational equilibria in systems with rough energy landscapes. Here, a significant step forward is made
by combining molecular dynamics with a novel variable transformation designed to enhance sampling
by reducing barriers without introducing bias and, thus, to preserve, perfectly, equilibrium properties.
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One of the premier challenges in molecular simulation
is to determine accurately and efficiently conformational
equilibria of systems described by complex potential sur-
faces that possess high energy barriers separating impor-
tant minima or basins of attraction. Indeed, rough energy
landscapes are ubiquitous in physical, chemical, and bio-
logical problems, including protein folding. Despite recent
advances [1,2], this important class of problems cannot,
yet, be adequately addressed by molecular simulation.

Current approaches include umbrella sampling, guid-
ing potentials, parallel tempering algorithms, and rate-
enhancing schemes. The first two techniques reweight the
phase space distribution in order to accelerate sampling at
the price of requiring an a posteriori correction. Thus, the
efficiency scales exponentially poorly with the number
of degrees of freedom involved in the reweighting factor.
Parallel tempering methods introduce a series of M simu-
lations at different temperatures which are permitted to
interchange. Thus, the cost of the calculation is M-fold
larger, and the number of temperature interchanges
accepted scales exponentially poorly with the system
size. Other methods that rely on harmonic transition state
approximations do not, in general, preserve equilibrium
properties.

In this Letter, a novel approach to the conformational
sampling problem that is free of the above difficulties is
presented. The method is based on an exact reformulation
of the classical statistical mechanical partition function
via a nonlinear transformation of the integration variables.
The transformation is constructed so as to effect a warp-
ing of the configuration space wherein barrier regions are
shrunk, barrier heights are lowered, and attractive basins
stretched. The result is a smoother surface, which allows
barriers to be easily traversed without (i) altering equilib-
rium properties of the system, (ii) requiring an a posteriori
reweighting, (iii) relying on harmonic approximations, or
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(iv) scaling exponentially poorly with the number of trans-
formed degrees of freedom. The technique is combined,
here, with molecular dynamics (MD) to form a novel con-
formational sampling scheme, although it could also be
used with Monte Carlo. Moreover, the new approach could
be combined with complementary transformations [3] that
help overcome entropic barriers as well as employed to
enhance the efficiency of other techniques such as paral-
lel tempering. Applications of the new method to model
and complex systems as large as 400-mer alkane chains
are considered in order to demonstrate its favorable scal-
ing with system size and its enhancement in sampling ef-
ficiency (a factor of 106 over standard MD for the long
chains, as will be seen shortly).

Consider, first, a classical particle with momentum, p,
mass, m, and coordinate, x, in a one-dimensional potential,
V �x�, which possesses two stable minima, separated by a
large energy barrier. The canonical partition function is

Q�b� �
1
h

Z
dx dp exp

Ω
2b

∑
p2

2m
1 V �x�

∏æ
, (1)

where h is Planck’s constant, and b � 1�kBT . The spatial
probability distribution function, P�x� ~ exp�2bV �x��,
appearing in Eq. (1), could be sampled using a classical
Hamiltonian, H � p2�2m 1 V �x�, in conjunction with
thermostated MD [4]. However, if the potential barrier
is too high, barrier crossing events will be rare, and ex-
tremely long trajectories will be needed to generate an ade-
quate sampling of the configuration space.

Since the variable, x, is just an integration variable, a
transformation to a new variable, u � f�x�, can be per-
formed arbitrarily without altering the partition function
in Eq. (1), assuming that the inverse x � f21�u� � g�u�
exists and is single valued. Upon changing variables and
exponentiating the Jacobian factor g0�u�, the partition func-
tion becomes
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Q�b� �
1
h

Z
dp du exp

Ω
2b

∑
p2

2m
1 Veff�u�

∏æ
. (2)

The key feature of Eq. (2) is the appearance of an effective
potential, Veff�u� � V���g�u���� 2 �1�b� lng0�u� that can be
adjusted via the transformation to be smoother than V �x�.
It is important to note that this approach completely elimi-
nates the need for a posteriori reweighting factors required
by the umbrella and guiding potential methods and does
not introduce harmonic approximations. It is, therefore,
not equivalent to any other existing schemes.

A spatial warping transformation is achieved via the
following change of variables:

u � f�x� � cx0 1 c
Z x

x0

dy exp�2bVr � y�� . (3)

Here, Vr �x� is an arbitrary reference potential, x0 is an ar-
bitrary point, and c is a constant. Since the integrand in
Eq. (3) is nonnegative and u is a monotonically increasing
function of x, a unique inverse x � g�u� exists. The Jaco-
bian of the transformation is du�dx � c exp�2bVr �x��.
Substituting Eq. (3) and the Jacobian into Eq. (2) gives
an effective potential Veff�u� � �V ���g�u���� 2 Vr ���g�u�����. If
Vr �x� is taken to be equal to the bare potential, V �x�, in
the barrier region and zero outside and x0 is taken to be the
left minimum �x0 � 2a�, then Veff�u� is barrier free [see
Fig. 1(a)]. Thus, the Jacobian weights the “u” space so as
to reduce the barrier region to a negligibly small volume
without altering the partition function. We refer to the new
approach as REPSWA (reference potential spatial warping
algorithm).

The reformulated partition function, Eq. (2), can be
sampled by a canonical MD approach based on a Hamilto-
nian, H̃ � p2�2m 1 Veff�u�, forming the REPSWA-MD
method. Since the transformation is not canonical, H̃ gen-
erates trajectories which sample phase space more effec-
tively than those of H � p2�2m 1 V�x�. That is, the true
dynamics, in which barrier crossing is, by definition, a rare
event, is not, nor is intended to be, preserved.

Since the integral in Eq. (3) cannot generally be evalu-
ated analytically, the function, exp�2bVr�x��, is expressed
in a finite basis of integrable functions, thereby defining a
transformation u � f̂�x�, so that the integrals can be per-
formed. The function, f̂�x�, will be very close to f�x�
in Eq. (3) for a large enough basis set. This is a key
step that allows the REPSWA-MD to be applied beyond
the harmonic approximation. Clearly, the transformation,
u � f̂�x�, also exactly preserves the partition function.

The REPSWA-MD technique is first applied to a one-
dimensional analytically solvable system in order to
demonstrate its validity and performance. A double-well
potential of the form V �x� � �Vb�a4� �x2 2 a2�2 is
selected, and canonical MD simulations are performed
for a high barrier, Vb � 10kBT . The equations of motion
for �p, u� are coupled to a Nosé-Hoover chain thermostat
[4] to effect the canonical sampling. Runs of length of
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106 steps were performed using a time step of Dt � 0.01
(kBT � 1, m � 1, and a � 1, c � 1). Figure 1 shows
trajectories x�t� � g���u�t���� with and without the REPSWA
transformation as well as the probability distribution
function, P�x�. The ability of the REPSWA technique to
reproduce the correct distribution, P�x�, demonstrates that
the partition function is perfectly preserved. In contrast,
ordinary canonical MD based on H is unable to generate
the correct distribution within 106 steps indicating, quan-
titatively, an increase in efficiency of over 6 orders of
magnitude using REPSWA.

Next, the nontrivial extension of the REPSWA method
to enhance sampling of multidimensional potential sur-
faces is discussed. In particular, chain molecules possess
many dihedral barriers in the range of �5 10�kBT , which,
as the previous example has demonstrated, are traversed
infrequently, hindering conformational sampling. It will
first be shown how to treat the commonly used “united
atom” (UA) molecular models (e.g., CHn-like moieties
are merged into pseudoatoms) [5], and then the additional
steps needed to treat all-atom models [6] will be discussed.

Dihedral barriers can be removed in united atom mod-
els by applying the REPSWA transformation [cf. Eq. (3)]
directly to the dihedral angle. However, since dihedral an-
gles are not explicit coordinates in MD, additional steps
are needed in order to apply the technique. Consider a
UA representation of butane, and assume the connectivity
is C1-C2-C3-C4, where Ci , the ith pseudoatom, has Carte-
sian position ri . The transformation scheme is (i) the vec-
tor r4 is rotated/translated into a frame in which r3 is at
the origin and r3 2 r2 lies along the z axis; (ii) the new r04
is then resolved into spherical polar coordinates, �r, u, f�;

FIG. 1. (a) Schematic of REPSWA for a double-well poten-
tial. (b) and (d) x�t� in the double-well potential �Vb � 10kBT �
without(b)/with(d) REPSWA. (c) and (e) Probability distribu-
tion without(c)/with(e) REPSWA (dashed lines) and analytical
result (solid line).
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(iii) REPSWA is applied to the azimuthal angle to gener-
ate fu; (iv) a Cartesian u0

4 is then created using �r, u, fu�;
(v) u0

4 is placed back into the original frame by inverting
the transformations (i) and (ii) to obtain a transformed set
of Cartesian coordinates. The constant c is adjusted to
ensure that fu [ �0, 2p�. The reference potential in step
(iii) is chosen to be equal to the dihedral potential between
the two gauche conformations and zero otherwise. The
forces on the u are obtained by the chain rule. This pro-
cedure allows for facile transformation of all the dihedral
angles in an N-pseudoatom chain by moving sequentially
down the chain. This procedure forms an upper triangu-
lar Jacobian matrix whose determinant is the product of
the exponentials of the reference potentials, which cancel
the desired barriers, while preserving the partition func-
tion. Both the coordinate and force transformations can be
carried out in O �N� operations.

The behavior of the dihedral REPSWA scheme is stud-
ied using the Ryckaert-Bellemans model [5] for a 400-mer
chain at T � 300 K (ignoring intermolecular Lennard-
Jones interactions to avoid freezing the chain). It should
be noted that guiding potentials/umbrella sampling could
not be used to enhance the sampling of all 397 dihe-
dral angles. The molecule was simulated using canonical
molecular dynamics in the gas phase with a time step of
0.5 fs for 106 steps with and without the REPSWA dihe-
dral angle transformation. Figure 2 demonstrates the large
improvement in sampling efficiency given by REPSWA.
The evolution of the end-to-end distance, R2�t��Nd2

C-C
�dC-C � 1.53 Å, N � 400� [Figs. 2(c) and 2(f)] indicates
that the fluctuations in this quantity are virtually nonex-
istent without REPSWA. Quantitatively, the number of
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FIG. 2. (a) and (d) Dihedral angle, fC198-C199-C200-C201 �t�, in the
UA 400-mer without(a)/with(b) REPSWA. (b) and (e) Num-
ber of dihedrals, N�f�, that have crossed barriers N�c� times
without(b)/with(e) REPSWA. (c) and (f) End-to-end distance
�R2�t��Nd2

C-C, dC-C � 1.52 Å� without(c)/with(f ) REPSWA.
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dihedral angle flips per torsion increases by a factor of
30, and the correlation time for the relaxation of R2�t�
decreases by 6 orders of magnitude. Note, the REPSWA
calculation was found to be in good agreement with the
prediction �	R2
�Nd2

C-C � 10� of a three state rotational-
isomeric state (RIS) model [7], parametrized using our
potential.

Last, it is shown how REPSWA can be used to
simulate “all-atom” models of chain molecules with
high efficiency [see Fig. 3(a)]. In all-atom models, the
backbone C1-C2-C3-C4 dihedral angle is strongly coupled
to the H1-C1-C2-C3, H2-C1-C2-C3, and H3-C1-C2-C3
dihedrals due to the sp3 hybridization of the carbon
atoms (represented by harmonic bond and bend angle
potentials). The rigidity caused by the hybridization
requires groups of atoms to be transformed as rigid
units. Groups of three atoms [e.g., C3, H4, and H5 form
such a group in Fig. 3(a)] are selected, and a “primary”
dihedral angle (e.g., H1-C1-C2-C3), defined. A set of
“secondary” dihedrals is formed by collecting dihedral
angles involving atoms both in and to the left of the
group (e.g., eight). The reference potential is then taken
to be Vr�fp� � �V �d�

p �fp� 1
P8

i�1 V
�d�
s,i �fp 1 di��S�fp�,

where V
�d�
p �f� and V

�d�
s,i �f� are the primary and secondary

dihedral potentials, respectively, S�fp� is a function that
switches off the potential outside the region between the
two gauche conformations, and �di� is a set of constants
chosen based on the ideal differences between the sec-
ondary and primary dihedral angles for sp3 geometry. In
a simulation, the actual secondary dihedrals will generally
not differ much from fprim 1 di. The full REPSWA
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FIG. 3. (a) Schematic of group REPSWA for C4H10 . (b) and
(d) Number of dihedrals, N�f�, that have crossed barriers N�c�
times without(b)/with(d) REPSWA; inset: fC198-C199-C200-C201 �t�.
(c) and (e) End-to-end distance �R2�t��Nd2

C-C, dC-C � 1.53 Å�
without(c)/with(e) REPSWA.
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transformation procedure is then the same as that for the
united atom case, except that three vectors rC2-C3 , rC2-H4 ,
and rC2-H5

are rotated about the C1-C2 axis.
The performance of the group REPSWA transforma-

tion scheme is tested on an all-atom 400-mer using the
CHARMM22 force field [6]. The simulation details are the
same as in the united atom case (see above). Figures 3(b)
and 3(d) show the histogram of backbone dihedral angle
“flips,” again, without and with REPSWA, respectively; the
insets show the evolution of a typical backbone dihedral
for the two cases. It can be seen that the use of REPSWA
leads to a much greater dihedral flipping rate by a factor of
30, and, hence, an improved sampling of conformational
space by a factor of 106 based on R2�t��Nd2

C-C [Figs. 3(d)
and 3(e)]. Again, the REPSWA calculation was found to
be in good agreement with the RIS model [7] prediction
�	R2
�Nd2

C-C � 15�.
In conclusion, a novel method for enhancing confor-

mational sampling simulations of complex molecular sys-
tems, REPSWA-MD, has been introduced. REPSWA-MD
smooths a rough potential energy surface via a nonlin-
ear variable transformation and, thus, does not alter the
equilibrium properties of a system. Unlike guiding poten-
tials or umbrella sampling, the method does not require
a posteriori reweighting and can be used to enhance sam-
pling in a very large number of degrees of freedom with-
out exponentially poor scaling. A dramatic improvement
in the rate of barrier crossing events and the number of
statistically independent conformations sampled has been
demonstrated (e.g., 6 orders of magnitude for a 400-mer
chain). The new technique can easily be combined with
complementary transformations [3] that help overcome en-
tropic barriers as well as with parallel tempering schemes.
Our current efforts are focused on applying REPSWA-MD
to proteins and other large biomolecules.
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