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Using computer simulations, we identify the mechanisms causing aggregation and structural arrest
of colloidal suspensions interacting with a short-ranged attraction at moderate and high densities. Two
different nonergodicity transitions are observed. As the density is increased, a glass transition takes
place, driven by excluded volume effects. In contrast, at moderate densities, gelation is approached as
the strength of the attraction increases. At high density and interaction strength, both transitions merge,
and a logarithmic decay in the correlation function is observed. All of these features are correctly
predicted by mode coupling theory.
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Colloidal dispersions aggregate into various nonequilib-
rium structures depending on density, interaction strength,
and range. The accompanying rheology and structure
are among the key properties desired for their techno-
logical applications [1]. Moreover, thanks to the possi-
bility to tailor effective interactions by, e.g., addition of
salt and polymer, colloids allow us to study the funda-
mental mechanisms of kinetic arrest. Whereas colloidal
hard spheres have become a model system for the study of
structural arrest at a glass transition [2], colloidal gelation
has only recently been associated with glassy behavior
[3–5]. Colloidal gelation is ubiquitous in suspensions
driven by attractions of quite short range and moderate-to-
high strength [6]. At low packing fractions, it entails
the formation of heterogeneous and often self-similar net-
works; there, an interplay of phase separation kinetics and
percolation often are considered responsible for its exis-
tence [6]. At higher densities, the gelation boundary ex-
tends into the homogeneous fluid region [3,7], where it also
lies well separated from estimates of percolation [3,7–9].
Crossing into the gelled state anywhere along the transition
line results in qualitatively the same phenomena, such as
flow properties that indicate solidification [7,8], and non-
ergodic dynamics according to light scattering [3,10,11].

We present simulations designed to identify the mecha-
nism of colloidal gelation driven by attractions of only
moderate strength. Because of the distance of the gel
boundary from other boundaries (percolation and phase
separation) at higher densities, we concentrate on these,
where we sweep out the region between gel and glass tran-
sition lines. We show that both nonequilibrium transitions
are caused by a slowing down of local rearrangements, as
predicted well by mode coupling theory (MCT) [4,12,13].
We contrast the glass transition, caused by caging of
particles owing to steric hindrance, with attraction-
driven gelation caused by bonding between particles. We
verify that the simultaneous presence of two nonergodic
states results in anomalous nonexponential (logarithmic)
time dependences, as recently conjectured to explain
observations in micellar systems [9] or microgel suspen-
sions [14].
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The simulated system comprises 1000 soft-core [V �r �
jri 2 rjj� ~ �aij�r�36, aij � ai 1 aj] particles of mean
radius a with polydispersity in size (flat distribution with
10% width) to prevent crystallization. Densities are re-
ported as packing fractions fc �

4p

3 na3. A short-range
attraction, mimicking the polymer induced depletion at-
traction in experimental systems [1,6,10,11], is given by
an Asakura-Oosawa (AO) form generalized to polydisperse
systems [15]. The range of the attraction, 2j, is set to 0.2a,
and its strength is proportional to the polymer concentra-
tion fp [16]. To help avoid liquid-gas separation, a weak
long-range barrier is added to the potential. The barrier
extends from a12 1 2j to 4a, and is described by a fourth
order polynomial matched to give a continuous force. Its
maximal height is 1kBT , which equals the depth at contact
of the AO potential at fp � 0.0625. In all states studied,
the barrier is much smaller than the attraction, and in the
purely repulsive case �fp � 0� it is omitted. We will mea-
sure lengths in units of a and time in units of

p
4a2�3y2,

where the thermal velocity, y, is set to 2�
p

3. Equations of
motion were integrated using the velocity-Verlet algorithm,
with a time step of 0.0025. Colloidal dynamics (neglect-
ing hydrodynamic interactions) were mimicked by running
the simulations in the canonical (constant NTV ) ensemble,
where the thermostat plays the role of the surrounding liq-
uid. Every N time steps, the velocity of the particles was
rescaled to ensure constant y. No effect of N on the results
was observed for well-equilibrated samples.

The central quantity of our study will be the self-part
of the intermediate scattering function, Fs

q�t� � �expiq ?

�rj�t� 2 rj�0���, for wave vector q, where �· · ·� denotes an
average over particles and time origin. Fs

q�t� allows us to
probe and identify the nature of the dominant dynamical
mechanism because of (i) its q dependence and (ii) the de-
tailed predictions that are available from MCT. Indeed, if a
structural arrest at a nonergodicity transition is approached,
Fs

q�t� reveals a two-step process, where the decay from the
plateau is given by the von Schweidler power-law series
[17]:

Fs
q�t� � fs

q 2 h�1�
q �t�t�b 1 h�2�

q �t�t�2b 1 O�t3b � . (1)
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Here fs
q is the nonergodicity parameter, h

�1�
q and h

�2�
q are

amplitudes, and b is known as the von Schweidler expo-
nent. On the one hand, the observation of this (universal)
von Schweidler behavior —and tests of further relations,
as done below —establishes that a feedback mechanism in
the structural relaxation causes arrest. On the other hand,
the (nonuniversal) wave vector dependence of the ampli-
tudes, such as fs

q, allows us to identify the specific kinetic
process which freezes out. As the transition is approached,
the characteristic time t diverges as t ~ jf 2 fcj2g ,
where g is determined by b, see, e.g., [17].

Figure 1 presents evidence for both the repulsion and
attraction driven glass transitions, as identified by a di-
verging t [18]. Upon increasing the packing fraction fc

(inset of Fig. 1), the system approaches a glass transition
caused by steric hindrance, which we have studied includ-
ing only the r236 repulsion (fp � 0 and no barrier) [19].
The transition correlates well with observations at the col-
loidal glass transition [2] and previous simulations of, e.g.,
a glassy Lennard-Jones mixture [20]. We have analyzed
it using the concepts of idealized MCT, but will present
only a few results here for comparison with gelation. The
attraction driven transition, which occurs inside the per-
colation region [21] and is induced by strengthening the
attraction, can be identified as the experimental gel transi-
tion. There, far from equilibrium or percolation transitions
(as we tested by monitoring the static structure factor), ar-
rest again is of kinetic origin, and occurs at lower attraction
strengths the higher fc.

To shed light on this transition, the correlation func-
tions at different wave vectors were studied. The slow-
est state at fc � 0.40 is presented in Fig. 2. Figure 2a
shows the self-intermediate scattering functions for differ-
ent wave vectors, and the fits using (1) up to second order.
A common exponent b was taken in the fitting, yielding a
value of b � 0.38, appreciably lower than the hard spheres
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FIG. 1. Relaxation time t as a function of fp for three colloid
volume fractions: fc � 0.40 �}�, fc � 0.50 ���, fc � 0.55
���. Inset: t vs fc for soft spheres [fp � 0, V�r� � r236].
The dotted lines are fittings with predetermined g.
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value b � 0.53 (which we found for our soft sphere glass
at fp � 0). As predicted by MCT, we can calculate from
b the divergence of the relaxation times in Fig. 1. The
resulting value g � 3.03 fits the data, while g � 2.63 at
the soft sphere glass transition [19]. The gel transition is
estimated to occur at fp � 0.431. Because we find the
universal properties predicted by MCT, we conclude that
at fc � 0.40 the gel transition is a regular nonergodicity
transition in the structural dynamics.

Their very different q-width (Fig. 2b) for the noner-
godicity parameters and amplitudes brings out a major
difference in the two underlying mechanisms. Whereas
repulsions localize the particle within a cage, which it
can explore up to mean squared displacements r2

l of the
order of r2

l � 0.13 (from our simulations, not shown;
r2

l � 0.134 from MCT [22]), attractions bind the particle
to its neighbors and thus localize it much more tightly. At
fc � 0.40, we find r2

l � 0.018 by simulations, which is
of the order of a low-density estimate [4] for our interaction
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FIG. 2. (a) Correlation functions at fc � 0.4, fp � 0.425
and von Schweidler fits. From top to bottom, q � 3.9, 6.9,
9.9, 15, 20, 25, 30, 35, 40, and 50. (b) fs

q for glass ��� and gel
��� [from (a)] transitions, with the Gaussian approximation for
both of them (dotted lines) and the MCT result for hard spheres
(dashed line) [22]. Inset: h�1�

q using t from Fig. 1 and the MCT
result for hard spheres.
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range, 2j � 0.2. The corresponding high amplitudes fs
q

of density fluctuations are consistent with light scatter-
ing observations at fixed q [10,11] and with MCT cal-
culations [4,12,13]. These fluctuations extend to large q
and relax only when the particles break free from their
bonds. The comparison with the Gaussian approximation,
fsG

q � exp	2q2r2
l �6
 evidences stronger non-Gaussian ef-

fects at gelation than at the glass transition. We stress
the cooperativity of the structural relaxation at both tran-
sitions. Holding all particles fixed, except for one, leads
to mean squared displacement for the tracer (as it explores
the frozen environment) much smaller than in the free sys-
tem (before the start of the structure relaxation of the free
system, the ratio is �6 for both cases). The cage or net-
work of bonds around an arrested particle thus necessarily
fluctuates with it.

To test further the nature of the gel transition, the scaling
of the final (or a) decay was studied. In Fig. 3 we present
the rescaled �Fs

q�t�t � 1� � 0.25� correlation functions
at q � 9.9 for different attraction strengths, close to the
gel transition. In the inset of this figure, a similar plot
deals with the glass transition (q � 3.9 in this case). In
both cases, the curves clearly collapse during the a decay,
indicating an unique mechanism which dominates the
slowing down at the transitions. For the purely repulsive
case, the MCT master curve for the rescaled decay of hard
spheres [22] at a slightly larger wave vector �q � 4.3�
is also presented, confirming the quantitative agreement
between MCT and our results. In the gel case, no master
function is available, but the fit to (1) is presented. The
different stretching in the two cases is clear.

We study now the gel transition at a higher density
fc � 0.55, where it lies closer to the glass transition.
Within MCT, the simultaneous existence of two differ-
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FIG. 3. Correlation functions vs rescaled time t�t for fc �
0.4 and fp � 0.375, 0.39, 0.40, 0.415, and 0.425 (from right
to left), and the von Schweidler fit. Inset: same plot for soft
spheres and fc � 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.585, and
0.59, and the MCT master curve [22].
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ent nonergodicity transition branches opens the possibil-
ity for end-point singularities, where the branches merge
[23]. In systems with short-range attractions, such a sin-
gularity has been predicted close to the crossing of the two
transition lines (the actual distance depending on the de-
tails of the potential) [4,12,13]. Close to the singularity,
a logarithmic decay around the plateau in the correlation
function, Fs

q�t� � fsA
q 2 Cq ln�t�t1�, is a proposed signa-

ture [12,13], and intriguingly is observed experimentally
in more complicated systems [9,14]. Having identified two
different nonergodicity transitions in our system, we now
test this prediction. In Fig. 4, the correlation functions at
the same wave vectors as in Fig. 2 are presented for the
state fp � 0.375. Logarithmic decays are observed in
all of the correlators (linear traces in the plot) for up to
three decades in time, signaling a higher order singularity
nearby. It is interesting to note that the logarithmic trace
of the correlator has different extents, depending on the
wave vector. To make it clearer, �Fs

q 2 fsA
q ��Cq vs time

has been plotted as an inset of Fig. 5, where fsA
q is deter-

mined at t1 � 5 (vertical line in Fig. 4). Deviations from
the logarithmic decay are stronger, the higher fs

q. This
is in complete agreement with the theoretical expectations
in [13]. Since both the von Schweidler decay (associated
with the gel transition) and the logarithmic trace now take
place in the same window, important corrections to the a

scaling of the curves are expected. This is seen in the main
graph of Fig. 5: the long time dynamics at different states
cannot be collapsed onto a master curve by time rescaling.
This shows that changes in the control parameters change
the relative distance not only to gelation but also to the
higher order singularity. The logarithmic decay in the cor-
relators indicates that two mechanisms are responsible for
the structural slowing down, and that this state is close to
the region where the glass transition changes into gelation.
The intermediate isochore, fc � 0.50, shows a mixed
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FIG. 4. Same as Fig. 2(a) for fc � 0.55 and fp � 0.375.
Dotted lines: logarithmic fittings to the correlators around fq .
The dashed line represents t1.
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FIG. 5. Correlation function vs rescaled time, t�t, at q � 20.
fc � 0.55, and fp � 0.325, 0.34, 0.35, 0.365, and 0.375 from
right to left at t , t. Inset: �Fs

q�t� 2 fq��Cq as a function of
time for the same state and wave vectors as Fig. 4 (wave vectors
increasing from top to bottom).

behavior: a logarithmic decay in a smaller window than
for fc � 0.55, and followed by an apparent power-law
decay.

In summary, by using molecular dynamics simulations,
we have deduced from the wave vector dependence of the
dynamical density fluctuations that repulsion and short-
ranged attraction lead to two different structural arrests
at high enough density or attraction strength, respectively.
At the merging of both glassy states, subtle logarithmic
time variations appear. Comparing with the recent MCT
predictions of these phenomena we find perfect agreement.
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