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Effect of Solvation on Hole Motion in DNA
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An excess charge on a DNA chain in solution interacts with polar solvent molecules and mobile
counterions. We give the first theoretical estimate of the resulting hole self-localization energy and
calculate the corresponding contribution to hole mobility on a DNA stack consisting of a single base
pair repeated.
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Many experiments on DNA are performed in a water
solution. So-called physiological conditions, i.e., those in
which DNA is placed in nature, correspond to a 0.1 M so-
lution of NaCl. Under these conditions DNA, being an
acid, donates protons to the solution (one proton per phos-
phate group), which results in a negative charge of the
molecule (22e per lattice constant a � 3.4 Å). Effects
due to interaction of this static charge with the environ-
ment (water and counterions Na1 and Cl2) were studied
extensively in the past years (for a review, see [1]). In par-
ticular, the charge on the chain is subject to (i) dielectric
screening by the surrounding water molecules, (ii) Debye
screening by the mobile counterions with a characteristic
distance �10 Å (Debye screening length), and (iii) par-
tial compensation by Na1 ions that condense directly onto
the DNA chain, an effect related to its one-dimensional
nature [2].

We will study the effect of the environment on the mo-
tion of an excess charge carrier (to be specific, we consider
holes) added to a DNA molecule. Each of the two DNA
strands may be viewed as a chain, each site of which is
one of the four bases: guanine �G�, adenine �A�, cytosine,
and thymine, each corresponding to a certain value of the
on-site potential for the hole. The overlap of electronic p
orbitals of the neighboring bases tends to delocalize the
carrier along the chain. Charge transport along DNA has
attracted much attention, both experimental and theoreti-
cal [3], in connection with such problems as DNA damage
and repair or potential applications in nanoeletronics.

Because the lowest on-site potential is that of G, in a
random sequence of bases transport may involve tunnel-
ing between G’s through other bases [4]. However, when
a G is followed by a long bridge sequence of A’s, after a
hole tunnels through the first 3 A’s it moves through many
later A’s with essentially no further attenuation [5]. Sev-
eral mechanisms have been proposed for the hole transport
through the bridge: incoherent hopping [6], fluctuation-
induced hopping [7], bandlike transport [8], polaron drift
[9]. We are aware of only one work addressing the prob-
lem of the solvation effect on hole transport [10], where
classical molecular dynamics simulations were performed.
However, polarization of the environment by the charge
was not taken into account there. To construct an approxi-
mate theory of this effect is the task of this Letter.
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The configuration of the solvent produced by the inter-
action with the static charge on phosphate groups, as men-
tioned above, on average produces a constant shift of the
energy of the hole, same for all the bases. Obviously, this
will not affect the motion of the hole. What one has to con-
sider is the change in this configuration due to the presence
of the hole and the corresponding feedback effect on the
hole motion. In other words, describing the interaction of
the hole with the polarizable environment, we do not need
to consider the static polarization already present due to
the static charge of the phosphates.

Considering the hole-induced polarization of the envi-
ronment independently of the static polarization induced
by phosphates implies several assumptions. First, wa-
ter is assumed to be a linear dielectric. Second, the lin-
earized version of the Poisson-Boltzmann equation for the
ion-screened electrostatic potential in the electrolyte is as-
sumed to be valid, i.e., the electrostatic potential felt by
ions in solution is assumed to be small compared to tem-
perature. Third, we assume that the presence of the hole
does not affect the counterions condensed on the chain.
Even if the hole is completely localized on one base, it
introduces just a charge 1e to the unit cell in addition to
22e on the phosphates. Actually, as we show later, the
hole wave function is spread over 3–5 sites, which would
result in the additional charge of 0.2e–0.3e per unit cell. It
is unlikely that this small correction will change the con-
figuration of condensed counterions.

We will now look at the hole stationary states to
estimate the effect of the environment on hole self-
localization. Let the hole charge density be r�r�. The
energy of interaction with the environment is given by

Eenv �
1
2

Z
d3r d3r0 r�r�

∑
G�r, r0� 2

1
jr 2 r0j

∏
r�r0� ,

(1)

where G�r, r0� is the electrostatic Green’s function in this
environment:

w�r� �
Z

d3r0 G�r, r0�r�r0� , (2)

with w�r� being the electrostatic potential. Physically,
Eq. (1) represents the electrostatic energy of the charge in
the presence of the environment with the energy of inter-
action of the charge with itself subtracted.
© 2002 The American Physical Society 098102-1



VOLUME 88, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 4 MARCH 2002
A practical way of describing the environment, adopted
in most works, is to consider the DNA molecule to be
placed inside a cavity C . Physically, the cavity is due to
the presence of the sugar-phosphate backbone and the hy-
drophobicity of the DNA bases. Its characteristic size R is
determined by the size of the helix: R � 10 Å. The space
outside the cavity is filled with the solution with dielec-
tric constant ´ at temperature T , in which counterions are
dissolved whose equilibrium densities (far from the DNA
molecule) are nNa � nCl � n. Neglecting the polarizabil-
ity of the backbone and the bases, we assume the cavity
to be empty. The Green’s function can be found from the
Poisson equation

=2G�r, r0� � 4pd�r 2 r0�, r [ C ,

�=2 2 k2
D�G�r, r0� � 0, otherwise,

(3)

with the usual boundary conditions at the interface. The
inverse Debye screening length kD is defined as k

2
D �

8pne2��´T �, the presence of two types of ions being
taken into account. We represent the hole wave func-
tion as a linear combination of molecular orbitals: c�r� �P

n cnfn�r 2 rn�, where fn is the orbital of the nth base
and cn is the probability amplitude for the hole on this
base. Neglecting the orbital overlap for different bases
[11], we obtain the corresponding charge density,

r�r� � ejc�r�j2 � e
X
n

jcnj
2f2

n�r 2 rn� . (4)

By substituting it into Eq. (1) and denoting the integrals
over r, r0 for each pair of terms of the sum (4) by gn2n0 ,
we express the hole energy as

H�cn, c�
n� � H0�cn, c�

n � 1
1
2

X
n,n0

gn2n0 jcnj
2jcn0 j2.

(5)

Hereafter we restrict ourselves to the case where the DNA
stack consists of the same base pair repeated. Then the
first term H0 corresponds to free hole motion —nearest-
neighbor hopping with the transfer integral t0:

H0�cn, c�
n� � 2t0

X
n

�cnc�
n11 1 c�

ncn11� . (6)

Hole stationary states can be found from the (nonlinear)
Schrödinger equation: ecn � ≠H�≠c�

n, obtained by vary-
ing the energy with respect to c�

n .
To estimate the coupling in the hole effective Hamil-

tonian, we consider first just one base pair and a spheri-
cal cavity of radius R which will give us an estimate for
the coefficient g0. Let us put a charge e into the cav-
ity. If we assume its distribution to be spherically sym-
metric, then the potential outside the cavity is is given by
the spherically symmetric solution of Eq. (3) decreasing at
infinity: w�r� � e� exp�2kDr��r, where e� is the effec-
tive charge which includes also the charge at the interface
r � R. The electric field inside the cavity is determined
only by the charge inside the cavity, hence the potential
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inside the sphere will differ from that in the absence of the
environment only by a constant w0. The field at r ! R is
equal to 2e�R2 and 2e��1 1 kDR�e2kDR�R2 inside and
outside the sphere, respectively. Using the continuity of
the electric displacement we find e� and obtain

w0 �
e
R

∑
1

´�kDR 1 1�
2 1

∏
. (7)

The typical characteristics of the solvent outside the cav-
ity are the following: at T � 298 K the static dielectric
constant of water is ´ � 78 [12], the Debye radius for the
0.1 M solution of NaCl 1�kD � 9.6 Å. For this value of
´ the first term in the square brackets is negligible, what-
ever kD is. Thus for such dielectric contrast the dominant
effect is interaction with water, not with counterions. The
energy (1) is then equal to 2e2�2R, so that g0 � 2e2�R.
Taking R � 10 Å we get jg0j�2 � 0.72 eV.

Neglect of the first term in Eq. (7) corresponds to setting
the electric field outside the cavity equal to zero. Gener-
ally, for an electrostatic problem with such a large value of
´ a dielectric is equivalent to a conductor [13]: the corre-
sponding correction is of the order of 1�´. In this case it
is sufficient to solve the Poisson equation,

2=2G�r, r0� � 4pd�r 2 r0�, r [ C , (8)

requiring the tangential component of the electric field to
vanish at the cavity surface.

Clearly, the spherical cavity overestimates the interac-
tion energy because in reality some part of the boundary
will be at a larger distance from the charge. Another pos-
sibility is to consider a cylindrical cavity of the radius R
and to assume the charge to be concentrated on the axis of
the cylinder at evenly spaced points zn � na correspond-
ing to the bases. Taking advantage of the translational
invariance along the cylinder axis, we make the Fourier
transform

r�r� � d�x�d�y�
Z `

2`

dk
2p

rkeikz . (9)

The corresponding Fourier component of the potential
wk�r�� (where we denoted r� �

p
x2 1 y2) satisfies the

Laplace equation for 0 , r� , R with the boundary
conditions,

2
≠2wk

≠r2
�

2
1

r�

≠wk

≠r�
1 k2wk � 0 ,

≠wk

≠r�

Ç
r�!0

�
2rk

r�

, wk�R� � 0 .
(10)

The solution may be expressed in terms of the modified
Bessel functions I0�jkjr�� and K0�jkjr��:

wk�r�� � 2rk

∑
K0�jkjr�� 2

K0�jkjR�
I0�jkjR�

I0�jkjr��
∏

.

(11)

The first term in the square brackets corresponds to the
free space solution, while the second term is entirely due
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to the boundary. Subtracting the self-interaction, we omit
the first term and obtain the interaction energy

Eenv � 2
1
2

Z `

2`

dk
2p

K0�jkjR�
I0�jkjR�

2rkr2k . (12)

The corresponding coefficients in Eq. (5) are given by

gn � 2
e2

R
y�na�R� ,

y�j� �
2
p

Z `

0

K0�q�
I0�q�

cosqj dq .
(13)

Setting R � 3a � 10.2 Å, we may evaluate the integral
for different n (Table I). For large j the value of the
integral is determined by the singularity K0�q� � 2 lnq
at q ! 0: y�j ø 1� � 1�jjj which gives 1% precision
already at j � 3.

Looking at these numbers one may notice two things.
First, the value of g0 is only slightly less than that ob-
tained from the spherically symmetric estimate. This sug-
gests that both estimates are relatively reliable. Second,
assuming the value of t0 � 0.1 0.2 eV typically used for
DNA [4,8], from Eq. (13) and Table I we see that the de-
pendence of gn on n is not very strong:

g1 2 g0 � 0.02e2�R � 0.03 eV ø t0 ,

due to the fact that a , R. This means that the kinetic
term will not allow localizing the hole to one lattice site.
The kinetic and interaction terms will balance each other
when cn is spread over some number l of sites, such that
gl 2 g0 � t0, which gives l � 3 5. If one takes into
account coupling to the lattice displacements [9], which
localize the charge within 3–5 sites, only g0, g61, and
probably g62 will effectively contribute, which means that
(i) the shape of the hole wave function will not be strongly
different from the one obtained without taking into account
solvation effects, (ii) the latter increase the binding energy
by �jg0j�2.

These considerations are illustrated in Fig. 1, where we
show the hole population profile jcnj

2 obtained by tak-
ing into account coupling to the lattice displacements and
to the environment separately and together. The parame-
ters used are t0 � 0.2 eV, a2�K � 0.2 eV (a being the
hole-lattice coupling constant, and K being the elastic con-
stant for the lattice [9]). The lattice contribution can be
included in the hole Hamiltonian (5) by adding 22a2�K
to g61 from Eq. (3). The binding energies corresponding
to the curves �a�, �b�, and �c� are 0.057 eV (lattice only),
0.52 eV (environment only), and 0.62 eV (both), respec-
tively. The shapes are not strongly different from each
other and are weakly dependent on the parameters (for
t0 � 0.1 eV the population profile due to interaction with

TABLE I. Calculated values y�j�.

j 0 0.33 0.67 1.0 1.33 1.67 2.0 2.33 2.67
y�j� 0.87 0.85 0.79 0.71 0.62 0.54 0.48 0.42 0.37
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the environment only is indistinguishable from the curve
�c� and the binding energy is 0.56 eV). These results al-
low us to conclude that this stationary state is stable (as the
binding energy is much larger than temperature) and has a
polaronic nature.

To study the effect of the environment on the hole dy-
namics, one should adopt a model for the dynamics of the
solution, namely, how the polarization of the environment
responds to the hole motion. For the dielectric screening
by the water molecules the relevant time scale is the orien-
tational relaxation time (t � 8.3 ps at T � 298 K [12]).
For the Debye-Hückel screening by counterions the char-
acteristic time is related to the conductivity s of the so-
lution as t � ´��4ps�. For the 0.1 M solution of NaCl
at T � 298 K, one has t � 650 ps [12], which is much
longer than typical times for the hole transfer in experi-
ments (10–100 ps). This gives the second argument for
the dominant contribution of water: counterions are too
slow to follow the hole motion.

To model the kinetics of water polarization we associate
with each site n a collective degree of freedom Qn, corre-
sponding to the motion of water molecules around the nth
base and having the sense of the screening charge induced
in the solution. The equation of motion for this degree
of freedom describes relaxation to the equilibrium value

Q
�eq�
n [14]:

�Qn � 2�Qn 2 Q�eq�
n ��t , (14)

t being the orientational relaxation time mentioned ear-

lier, and Q
�eq�
n determined by the charge density jcnj

2. The
Hamiltonian for the coupling of this degree of freedom to
the hole motion can be written from the following consid-
erations. First, no kinetic energy should be associated with
Qn, as it is overdamped. Second, for the equilibrium dis-
placements Q

�eq�
n to be finite, some “elastic constant” K

should be introduced. Third, the coupling to the hole
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FIG. 1. Hole population jcnj

2 for a stationary state formed by
interaction with �a� lattice only, �b� environment only, �c� both.
a2�Kt0 � 1.0, e2�Rt0 � 7.0.
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motion should be linear in Qn and jcnj
2 because both

of them represent some charge, and the coupling is of
Coulomb origin. This allows us to write the Hamiltonian,

H�cn, c�
n , Qn� � H0�cn, c�

n� 1
X
n,n0

ln2n0Qnjcn0 j2

1 �K�2�
X
n

Q2
n , (15)

and the equation of motion for cn: ih̄ �cn � ≠H�≠c�
n .

To relate the values of the coupling ln2n0 and the elas-
tic constant K to physical parameters we find the static
equilibrium displacements from the Hamiltonian (15):

Q�eq�
n � 2

X
n0

ln2n0

K
jcn0 j2. (16)

Substituting them into the Hamiltonian (15), we obtain an
effective Hamiltonian for stationary states that should be
identical to the Hamiltonian (5). Since Qn has the sense of
screening charge, we require also

P
Q

�eq�
n � 2

P
jcnj

2.
As a result, we obtain two conditions for ln and K :

gn � 2
X
n0

ln02nln0�K ,
X
n

ln�K � 1 . (17)

It is convenient to use Fourier transform,

f�k� �
X
n

fne2ikn, fn �
Z p

2p

dk

2p
f�k�eikn

(18)

( fn being a generic function); these conditions can then
be written as

K � 2g�0�, l�k�l�2k� � g�0�g�k� . (19)

Using this model we can estimate the mobility m of the
polaron on the chain. For this we note that the total energy
of the system is not conserved, but instead changes in time
due to the frictional force according to

�E � 2tK
X
n

�Q2
n . (20)

Consider a stationary polaron of dimensionless width l
moving with the velocity y along the chain, e.g., dragged
by an applied electric field. Then the hole population
has the form of a propagating pulse: jcn�t�j2 � F�n 2

yt�a�, with a being the lattice constant (3.4 Å), and F�j�
being a continuous function. If y ø la�t, then Qn will
follow quasistatically: Qn�t� � Q

�eq�
n �t�, the latter given

by Eq. (16). On one hand, the dissipated power is given
by the sum (20); on the other hand, it is equal to ey2�m.
As a result, for m we obtain

e�m � 2�t�a2�
X
n,n0

gn2n0F 0�n�F 0�n0� , (21)

where F 0�j� � dF�dj. This sum can be estimated as
to the order of magnitude: m�e � l3�a2�t� �e2�R�21,
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which for l � 3 and the cited parameters gives m � 3 3

1023 cm2��V s�. To evaluate the sum (21) we
take F�n� � jcnj

2 for the standing polaron [15],
namely, curve �c� in Fig. 1, and define the deriva-
tive of the lattice function F�n� � jcnj

2 through the
Fourier transform [F 0�n� $ ikF�k�]. The result is
m � 2.4 3 1023 cm2��V s�.

In the opposite limit y ¿ la�t the solvent will not
follow the hole; thus the dissipation will be negligible and
high-field mobility will be determined by different effects,
which are beyond the scope of this paper.

In conclusion, we have considered the effect of solvation
on hole motion on a DNA chain consisting of the same
base pair periodically repeated. Our results are (i) the most
important interaction is that with polar water molecules,
not with counterions; (ii) the self-localization energy due
to this interaction is �0.5 eV; (iii) due to nonlocality of
the interaction the hole does not self-localize to one lattice
site, but is spread over 3–5 sites; (iv) interaction with water
provides an upper bound for the low-field hole mobility
along the chain: m , 1022 1023 cm2��V s�.
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