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We give exact relations for small-world networks (SWN’s) which are independent of the “degree
distribution,” i.e., the distribution of nearest-neighbor connections. For the original SWN model, we
illustrate how these exact relations can be used to obtain approximations for the corresponding basic
probability distribution. In the limit of large system sizes and small disorder, we use numerical studies to
obtain a functional fit for this distribution. Finally, we obtain the scaling properties for the mean-square
displacement of a random walker, which are determined by the scaling behavior of the underlying SWN.

DOI: 10.1103/PhysRevLett.88.098101 PACS numbers: 87.18.Sn, 05.10.–a, 05.40.–a, 05.50.+q
Networks occur in many contexts in the sciences and
humanities. Among these are neural networks [1], social
networks [1–3], food webs [4,5], and the Internet and the
World Wide Web [6,7]. Many properties of such complex
systems can be understood by considering the network of
interactions which connects their components. For this
reason, much recent research has focused on the structure
of these networks [8–13].

The study of network models has recently been ad-
vanced by the introduction of small-world networks
(SWN’s) by Watts and Strogatz [1]. These networks have
an ordered structure locally, but are random on a global
scale. This combination of features suggests that SWN’s
can be used to describe the behavior of many real-world
interacting networks [14]. However, as originally defined,
SWN’s do not exhibit a property found in some large-scale
networks such as the World Wide Web, in which the
probability distribution for the number of nearest-neighbor
connections to a given site (the “degree distribution”) is
a power law, rather than Poisson-like, as in the SWN’s
[9]. Alternative models which do exhibit this power-law
distribution have been proposed [15–18].

In this Letter, we study SWN’s where shortcuts accord-
ing to a given degree distribution are superimposed on a
regular network. For this class of networks, we show ex-
act results which are independent of the specific degree
distribution employed. This independence is noteworthy,
since the major point of difference between the various net-
work models currently studied is the degree distribution.
Our results indicate that there exist “universal” properties
of random networks which are independent of the degree
distribution. Furthermore, they can also be used to find
approximations for the basic probability distribution (as
defined below) of the network. On the basis of numerical
simulations of the original SWN model (with Poisson-like
degree distribution), we propose that the basic probabil-
ity distribution is characterized by a function of a single
variable in the limit of small disorder (as defined below)
and large system size: the so-called “small-world” regime.
Using this functional form, various structural properties of
networks in the small-world regime can be accurately de-
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termined without the need for further, expensive computer
simulations. We also study how the structural properties
of this particular SWN model affect an important example
of dynamics on SWN’s: the time-dependent mean-square
displacement of a random walker.

The SWN’s are defined by starting from a one-
dimensional regular network with periodic boundary
conditions and L � 2N nodes, each node being connected
to its 2k nearest neighbors. We add shortcut ends to
each node according to a given degree distribution by
following the prescription of Refs. [17,19]. For the origi-
nal SWN model (with k � 1), the degree distribution is
Dq � �1 2 p�P�q��p� 1 pP�q21��p�, where Pq�l� �
exp�2l�lq�q! is the Poisson distribution. We then select
pairs of shortcut ends at random and connect them to each
other, thus creating a shortcut. This procedure (with the
above Dq) of generating the networks is equivalent to
the procedure outlined by Newman and Watts [8], with
kp as the probability of having a shortcut at a given site.
Thus, on average, there will be x � kpL shortcuts in the
network. The present numerical results were calculated
for k � 1; however, generalization to other k is straight-
forward and indicated in our equations (which we have
verified numerically). The “small disorder” regime corre-
sponds to p ø 1, and we will work in the limit of large
system sizes such that terms of O �1�L� can be omitted.

The SWN is characterized by two types of distances:
the “Euclidean distance,” defined as the shortest distance
between two sites before any shortcuts are introduced into
the network; and the “minimal distance,” which denotes
the shortest distance after shortcuts have been added. We
now define P�mjn� (the basic probability distribution) as
the probability that two sites have minimal separation m,
given that their Euclidean distance is n. For the original
SWN model, we have previously proved [13] that P�mjn�
can be written in the form

P�m j n� �

8<
:

f�m�, m , n ,
1 2

Pn21
i�1 f�i�, m � n ,

0, m . n .
(1)

The proof is quite general, however, and the above result is
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exact for SWN’s with arbitrary degree distributions. Fur-
thermore, it is also true for two (and higher) dimensional
SWNs, which have attracted attention as models for dis-
ease spreading among plants [20,21].

From Eq. (1)we see that P�m j n� is fully characterized
by the function f�m� [22], which can be regarded as the
probability that two diametrically opposite sites have mini-
mal separation m. Many structural properties, such as the
average minimal separation between two randomly cho-
sen points, �, can be expressed in terms of f�m� [13], and
these expressions can be used to derive exact relations con-
necting various quantities of interest. An important rela-
tion derived in this manner relates the average number of
sites within m hops of a randomly selected origin, V �m�,
to F�m� �

Pm
k�1 f�k�, the cumulative probability distribu-

tion, as

V �m� � 2km 1 �L 2 2km�F�m� . (2)

Through our simulations, we have confirmed the validity
of Eqs. (1) and (2) for several different types of degree
distributions for 1D networks, including networks with
power-law degree distributions. These exact relations can
be used to obtain quantities of interest for the network. In
a simple model for disease spreading [11], for example,
V �m� corresponds to the number of infected sites after m
time steps. Furthermore, Eq. (2) tells us how to calculate
F�m� [and hence f�m�], once we know V�m�. Thus, any
approximation for V �m� can be converted into an approxi-
mation for f�m�. In the remainder of this paper, we will
illustrate this procedure by focusing on the original SWN
model.

We will now use the mean-field result of Newman et al.
for V �m� to obtain an approximation for f�m�, and hence,
to motivate a new scaling form for this function. In the
asymptotic limit (x ¿ 1), using Eq. (2) in conjunction
with the mean-field results of Ref. [12], we obtain a re-
lation between f�m� and F�m�:

fmft�m� � 4k2pFmft�m� �1 2 Fmft�m�� , (3)

which is the logistic growth equation, as pointed out by
Barbour et al. [23]. Equation (3) can easily be solved
for fmft�m� [24]. We note that the final expression for
fmft�m� is consistent with the scaling form f�m; N , p� �
h�m�N ,pN��N derived in Ref. [13].

We now consider the central moments of this distribu-
tion, defined as

m� �
NX

m�1

�m 2 �m���fmft�m� . (4)

The scaling form for f�m� implies that the scaled moments
m��N� are functions of x only; however, fmft�m� has an
additional property: its central moments in this case take
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FIG. 1. Plot of the universal function g� y� [cf. Eq. (6)] for
three choices of system size L and probability of shortcuts, p
(see text): (i) L � 107, p � 1024 (full line); (ii) L � 107, p �
1023 (stars and full line); and (iii) L � 2 3 106, p � 1023

(circles and full line).

the form

m�

N�
�

c�

x�
, (5)

where c� is the �th central moment of the logistic distri-
bution. We have confirmed through numerical simulations
that Eq. (5) holds for at least the first four central mo-
ments of f�m�, however, with coefficients c� which differ
significantly from those obtained from the logistic growth
equation. For example, from our simulations, we find
c2 � 1.21, whereas the corresponding mean-field value is
cmft

2 � 0.82. Equation (5) also implies that m� 	 p2�,
and hence, for fixed p, is independent of N . Consequently,
the probability distributions f�m�, for fixed p and differ-
ent values of N , are simply related by a translation of the
mean values. We have confirmed this translation property
by simulations carried out for a wide range of parameters
in the small-world regime.

On the basis of these features, we propose the following
scaling form for f�m� in the asymptotic limit (x ¿ 1):

f�m; N , p� �
kx
N

g

∑
kx
N

�m 2 �m��
∏

, (6)

where g� y� is a universal function. It is readily seen
that the above scaling form is consistent with Eq. (5).
In Fig. 1, we show calculations of f�m� for three differ-
ent combinations of the parameters �p, L�: �1024, 107�,
�1023, 107�, and �1023, 106�. For all three choices of pa-
rameters, f�m; N , p� can be collapsed onto a single curve.
Thus, numerical simulations for just one choice of the pa-
rameters �p, L� suffice to determine g� y�. To fully deter-
mine f�m� we need to find functional forms for both g� y�
and �m�, which we now proceed to do.
098101-2
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FIG. 2. Comparison of the universal function g� y�, as ob-
tained from numerical calculations (full line), mean-field the-
ory (dashed line), and our two-parameter fitting function Eq. (7)
(stars and full line).

We can represent g� y� using a two-parameter mixture
of logistic distributions:

g� y� �
1

2�1 1 g�
�sech2� y 1 gb� 1 g sech2� y 2 b�� .

(7)

This form ensures that g� y� is normalized, has zero mean,
and has the correct behavior for large j yj. In Fig. 2, we
show a comparison of the mean-field result, the fitting
function, [Eq. (7) with g � 0.492 and b � 0.782], and
the numerically obtained g� y�. Evidently, this function
describes the numerical g� y� very well, while the mean-
field g� y� agrees less well.

To determine �m�, we use the exact relation, which was
proved in [13] and is valid for a general degree distribution,

� � �m�
µ
1 1

k
L

∂
1 �m2�

k
L

, (8)

together with the definition m2 � �m2� 2 �m�2. Thus,
once we have fitting forms for � and m2, we can determine
�m�. From our simulations, we have already determined
m2 (see above). As for �, we find numerically that

k�

L
�

log�2x�
4x

1
a

x
, (9)

with a � 0.13. This numerical estimate agrees well with
the mathematically rigorous result derived in Ref. [23]. In
Fig. 3, we show a comparison between the fitting form
(9), the numerically obtained values for �, and the mean-
field result k�mft�L ! log�2x���4x�. As the inset shows,
Eq. (9) gives � with a relative error of less than 1%.
Keeping only terms through O �1�x�, and recalling that
m2�L2 	 1�x2, we find that �m� � �. Hence, �m� is
098101-3
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FIG. 3. Numerically computed average minimal distance be-
tween two randomly chosen nodes � (stars) using p values
ranging from 1024 to 1023 and system sizes L from 104 to 107.
Dashed line: mean-field result �mft�L � log�2x��4x. Solid line:
our fitting form ��L � �mft�L 1 0.13�x. The inset shows the
absolute relative error between the numerical data and our fitting
form.

given by

�m� �
L
k

∑
log�2x�

4x
1

0.13
x

∏
. (10)

The three equations (6), (7), and (10) provide a full func-
tional form for f�m� in the asymptotic scaling regime for
a SWN with degree distribution Dq. Note the striking
pattern of successive simplifications during our analysis
of the probability functions. Initially, P�m j n� depended
on the four variables m, n, p, and N . The exact re-
sults obtained in Ref. [13] reduced this dependence to
a function of three variables f�m; N , p�. Furthermore,
the scaling properties discussed in [13] imply that, for
p ø 1, f�m; N , p� � h�m�N , pN��N , a function of only
two variables. Finally, we have shown in the present work
that in the limit x ¿ 1, the small-world network is char-
acterized by a function of a single variable, g� y�. This
functional form can be used to obtain detailed, accurate,
structural information about networks in the small-world
regime without having to perform computationally expen-
sive simulations.

The scaling forms for f�m; N , p� can also be used to
gain insight into dynamics on SWN’s. As an example,
we consider the dynamics of a random walker on SWN’s,
a problem which has been studied by several authors
[25–27]. Here, we focus on the mean-square displace-
ment, �r2� of a random walker on a SWN, as a function of
time [28]. At long times, �r2� must saturate to the finite
value �2�L,p�, since, in the long-time limit, each node of
the network has equal probability of being occupied by
the random walker. The other length scale determining the
behavior of the random walker is j � 1�p, the average
098101-3
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FIG. 4. The mean-square displacement, �r2�, for a random
walker on SWN’s with x � 100 (upper curve), using L �
5 3 103 (circles and full line), and 1 3 104 (stars and full line).
By contrast we also show �r2� for a regular network (x � 0;
dashed line).

distance the walker travels to reach a shortcut. Note
that in the scaling limit, �2�L, p��L2, and consequently
j2��2�L, p�, are functions of x only. Correspondingly we
can write down the scaling ansatz

�r2� � �2R

µ
t

�2
; x

∂
. (11)

Because of the diffusive behavior for small y and satura-
tion for large y, we expect R� y� � y for y ø j2��2, and
R� y� � 1 for y ¿ 1. We have numerically confirmed the
scaling collapse implied by Eq. (11) for a wide range of x
values, and an example is shown in Fig. 4. Note that we
can readily calculate the length scale �2 using our func-
tional form for f�m�, illustrating how knowledge of the
underlying structure helps in understanding the dynamical
properties.

In summary, we have given exact results which are valid
for SWN’s with an arbitrary degree distribution superim-
posed on a regular lattice. We have also shown that in
the small-world limit (x ¿ 1), the structure of the origi-
nal SWN’s can be characterized by a single function g� y�
and the mean value �m�, and we provide empirical fitting
forms for both quantities. In addition, we have shown that
the mean-square displacement of a random walker exhibits
scaling properties which follow from those of the under-
lying SWN. The structural aspects of SWN’s discussed
in this work should be useful in understanding many other
properties of dynamics on SWN’s.
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