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Thermalizing Quantum Machines: Dissipation and Entanglement
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We study the relaxation of a quantum system towards the thermal equilibrium using tools developed
within the context of quantum information theory. We consider a model in which the system is a qubit,
and reaches equilibrium after several successive two-qubit interactions (thermalizing machines) with
qubits of a reservoir. We characterize completely the family of thermalizing machines. The model shows
a tight link between dissipation, fluctuations, and the maximal entanglement that can be generated by
the machines. The interplay of quantum and classical information processes that give rise to practical
irreversibility is discussed.
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The hypothesis of the quantum appeared suddenly in
physics as an offspring of thermodynamics, due to the
work of Planck on the blackbody radiation. In its early
days, however, the new theory developed rather as a form
of reversible mechanics. One century after Planck’s in-
tuition, the link between quantum mechanics (QM) and
thermodynamics has been discussed by several scientists,
and is still an actual field of research [1]. In parallel to
fundamental issues, the concept of quantum machines has
arisen recently in the field of quantum information process-
ing [2]. Looking back again to history, we see that thermo-
dynamics was born to describe engines. It is thus natural
to ask whether there is a “thermodynamics” of quantum
machines, and whether the modern standpoint of quan-
tum information can cast some new light on the founda-
tions of thermodynamics. After some pioneering works
[3], these ideas have stimulated many investigations in the
last months [4].

In this Letter, we focus on the process of thermalization,
that is, the relaxation towards the thermal equilibrium of
a system in contact with a huge reservoir (bath). More
precisely, let rB be the thermal state of the bath [5], r a
generic state of the system, and re the state of the system
at thermal equilibrium. A thermalization process is defined
by these two requirements: (I) The state re ≠ rB is sta-
tionary; (II) if the system is prepared in a state r fi re ,
at the end of the process we have a total state rSB such
that TrB�rSB� � re and TrS�rSB� � rB, where TrB,S are
the partial trace over the bath and the system, respectively.

Thermalizing quantum channels can be realized by let-
ting the system undergo interactions with the bath that are
localized in time. Such models, known as collision models
[6], are admittedly rather artificial as models for dissipa-
tive processes [7], but are most natural in the context of
quantum information [8]. The system passes through sev-
eral identical machines U (Fig. 1), or several times through
the same machine; at each passage, it becomes entangled
(that is, it shares a part of the information encoded in the
state) with an ancilla, i.e., some degrees of freedom of the
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bath. At the output of the machine, the ancilla is discarded
into the bath: the information present in the system has
undergone some degradation that depends on the state of
the bath and on the machine.

Our main goal is to quantify the role of entanglement
in this thermalization process. Since a computable mea-
sure for entanglement of mixed states is known only for
states of two two-dimensional quantum systems (qubits)
[9], we consider a thermalization process in which both
the system and the ancillas are qubits. Before discussing
entanglement, we give the family of all the thermaliz-
ing machines U acting on two qubits, and a fluctuation-
dissipation theorem for the thermalizing channel that these
U define.

The model.—We start with a description of the model:
(i) The system is a qubit, and the bath is a reservoir

composed of an arbitrarily large number N of qubits. The
free Hamiltonian for the whole system is

H0 � HS 1 HB � h�S� 1

NX
i�1

h�i� , (1)

where h�k� is the operator acting as h � 2Esz on
the qubit k and trivially on the other qubits. The bath
is supposed to be initially in the thermal state rB �
e2bHB �Tr�e2bHB � � �j�≠N with j � e2bh�Tr�e2bh� �
1
2 �' 1 tanh�bE�sz �, and b �

1
kT . Let P0 � j0� �0j and

P1 � j1� �1j be the projectors on the eigenstates of sz;
thus

FIG. 1. The quantum channel: a repeated application of a uni-
tary U (quantum machine), that couples the state of the system
with the state of the bath.
© 2002 The American Physical Society 097905-1



VOLUME 88, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 4 MARCH 2002
j � pP0 1 qP1, q � 1 2 p , (2)

with p �
1
2 �1 1 tanh�bE��. We set E . 0, so that j0� is

the ground state, and p � 1 corresponds to T � 0.
(ii) The machine U is a unitary operation on �2 ≠ �2.

This means that at fixed time the system interacts with
just a single qubit taken out of the bath. In our model we
consider that a qubit of the bath undergoes at most one
interaction with the system. This assumption is justified
by the fact that the bath is assumed to be very large (i.e.,
“infinite”). Therefore the input state of the ancilla is always
j, and we write

r�k11� � TrB�U�r�k� ≠ j�Uy� 	 Tj�r�k�� . (3)

Thermalizing machines.—For the model just intro-
duced, the two requirements I and II read [10]: for all j

diagonal in the eigenbasis of sz ,

I: Uz�j ≠ j�Uy
z � j ≠ j , (4)

II: r�n� � Tn
j �r� °! j ; r . (5)

The subscript z is meant to remind the reader that we allow
the machine U to depend on the eigenbasis of j, that is on
h. Conversely, we want these requirements to hold for all
p, that is for all temperature.

It is important to notice here the existence of an equiva-
lence class. Let u�x� � P0 1 eixP1, and suppose that
Uz satisfies (4) and defines a channel Tj. Then U 0

z �
���' ≠ u�a����Uz���' ≠ u�b���� satisfies (4) as well, and defines
the same channel T 0

j � Tj. This is easy to see by noticing
that u�x�ju�x�y � j for all x. This equivalence is a con-
sequence of the freedom of choosing the global phases of
j0� and j1� for qubits in the bath. Having noticed this, we
can proceed to find all the thermalizing machines.

Take first requirement I: condition (4) implies that the
subspaces P0 ≠ P0, P1 ≠ P1, and P0 ≠ P1 1 P1 ≠ P0
must be invariant under the action of Uz. In fact, on the
left-hand side UzP0 ≠ P0Uy

z appears with the weight p2,
Uz�P0 ≠ P1 1 P1 ≠ P0�Uy

z with the weight p�1 2 p�,
and UzP1 ≠ P1Uy

z with the weight �1 2 p�2. Since we
want condition (4) to hold for all p, the three subspaces
must be separately invariant. This implies �Uz , H0� � 0:
the sum of the one-qubit energies is conserved by the in-
teractions. By inspection, one can see that, up to a global
phase factor, the most general unitary operations that leave
these subspaces invariant is parametrized by five angles;
only three of them are left if we choose a suitable repre-
sentative element in the equivalence class discussed above.
Precisely, all unitary operations that fulfill condition (4)
can be chosen of the form

Uz�f, u, a�: j0� j0� ! j0� j0� ,

j1� j1� ! j1� j1� ,

j0� j1� ! ei�u1a��cj0� j1� 1 isj1� j0�� ,
(6)

j1� j0� ! ei�u2a��cj1� j0� 1 isj0� j1�� ,
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with c � cosf and s � sinf, f [ �0, p

2 �, and u, a [
�0, 2p�. We turn now to demonstrate that almost all these
machines satisfy condition (5) as well. To do this, let us
write the state of the system after n steps as

r�n� � d�n�P0 1 �1 2 d�n��P1 1 k�n�j0� �1j 1 H.c. (7)

Inserting the explicit form (6) for Uz into (3), we find that
the effect of the map Tj is given by d�n11� � d�n�c2 1

ps2 and k�n11� � clk�n� with

l � eia�pe2iu 1 qeiu� . (8)

A straightforward iteration gives d�n� and k�n� as a function
of parameters d�0� and k�0� of the input state

d�n� � �1 2 �cosf�2n�p 1 �cosf�2nd�0�, (9)

k�n� � k�0��l cosf�n. (10)

Thus, whenever f fi 0, the iteration of Tj yields d�n� !

p and k�n� ! 0 since jlj # 1; that is, r�n� ! j: almost
all the machines of the form (6) satisfy requirement II as
well. In conclusion, the family of thermalizing machines
for h � sz is composed by the Uz�f, u, a� given by (6)
with f fi 0 [11].

Dynamical equivalence of machines.—The dynamics
(9) of the diagonal term d�n�, that is the dissipation, is
determined only by f. The other parameters u and a en-
ter only the dynamics (10) of the off-diagonal term k�n�,
the decoherence, through the complex number l given in
(8). Actually, a plays a trivial role: it simply redefines at
each iteration the axes x and y in the plane orthogonal to z.
Apart from this global rotation, the effect of l can be vi-
sualized as follows: the state of the system undergoes a
rotation of 2u (respectively, 1u) in the �x, y� plane if
it interacts with the state j0� (respectively, j1�) of the
bath, which happens with probability p (respectively, q).
This dephasing process contributes only to the decoherence
rate. Note also that jlj is unchanged if one replaces u by
p 1 u. Guided by these considerations, we say that two
machines Uz�f, u, a� and Uz�f,u 1 np, a0� that differ
only on the value of a are dynamically equivalent. We
choose

Vz�f, u� 	 Uz�f,u, 0� � Uz�f,u, a� �u�a� ≠ u�2a��
(11)

as a representative element of the class. The Vz�f, u� are
diagonal in the Bell basis:

Vz�f, u� � P00 1 P11 1 ei�u1f�PC1 1 ei�u2f�PC2 ,

(12)

with jC6� �
1
p

2
�j01� 6 j10��. The Hamiltonian repre-

sentation is easily derived: Vz�f, u� � ei�u�2�eiH�f,u� with

H�f, u� �
1
2

�f�sx ≠ sx 1 sy ≠ sy � 2 usz ≠ sz� .

(13)
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Finally note that we can handle the dissipation and
the dephasing processes separately, since Vz�f, u� �
Vz�f, 0�Vz�0, u� � Vz�0, u�Vz�f, 0�. By the way,
Vz�f, 0� is a realization of the two-qubit copying ma-
chine, proposed by Niu and Griffiths, that defines Eve’s
optimal individual attack on the four-state protocol of
quantum crypthography [12].

The partial swap.—During the whole construction of
the thermalizing machines, we insisted on the fact that the
machine may depend on the direction z defined by the
local Hamiltonian h. A natural question is whether any
of the machines Uz�f, u, a� is actually independent of z:
such a machine would thermalize the state of the system
for all one-qubit Hamiltonians h � 2En̂ ? �s. It turns out
[13] that there exists a unique machine with this property,
which is V �f, 2f�. This machine is a partial swap, since

V �f, 2f� � e2if�cosf' 1 i sinfUsw� , (14)

where Usw � V �p

2 , 2p

2 � is the swap operation, i.e., it
is the unitary operation whose action is jc1� ≠ jc2� !
jc2� ≠ jc1� for all jc1�, jc2� [ �2. The partial swap con-
veys the intuitive idea, that at each collision part of the
information contained in the state of the system is trans-
ferred into the bath. This machine is the cornerstone of the
quantum-information process called homogenization [13].
For the dissipation, i.e., apart from phase fluctuations, all
thermalizing machines are equivalent to the partial swap:
V�f, u� � V�0, u 1 f�V�f, 2f�.

This concludes the characterization of the family of the
thermalizing machines. In the remainder of the paper, we
study their properties, first in terms of thermodynamics,
then from the standpoint of quantum information.

Relaxation times.— We would like to pass from the
discrete dynamics indexed by n to a continuous-time
dynamics with parameter t. To perform the limit, we
set n � t�t0, and we let the interaction time t0 go to
zero together with f and u, keeping constant the dissi-
pation rate f2

t0
�

1
T1

and the phase fluctuation rate 2u2

t0
�

1
Tpf

. We have �cos2f�n 
 �1 2 f2�t�t0 ! e2t�T1 , and

�jlj cosf�n 
 ��1 2 2pqu2� �1 2
f2

2 ��t�t0 ! e2t�T2

with

1
T2

�
1

2T1
1 pq

1
Tpf

�
1

2T1

µ
1 1 4pq lim

t0!0

u2

f2

∂
.

(15)

Thus in the continuous-time limit, the processes of dissi-
pation (9) and decoherence (10) are exactly exponential:

d�t� � e2t�T1d�0� 1 �1 2 e2t�T1�p , (16)

jkj�t� � e2t�T2 jkj �0� , (17)

with the relaxation times T1 and T2 defined in the usual
way [14]. For u � 0 or at zero temperature, the bound
T1 $

1
2 T2 (see, e.g., [6], p. 120) is saturated.

Fluctuation-dissipation (FD) theorem.—A FD theorem
links the fluctuations at equilibrium and the mechanisms
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of dissipation. Usually, this link is derived in a different
framework [7]: in particular, a continuous spectral density
of the bath is normally assumed, while here HB exhibits
finite gaps. Nevertheless, one can define a measurable
quantity associated to fluctuations and dissipation. Con-
sider the following protocol. First, the system is prepared
in the equilibrium state j and is measured in the basis of
its eigenstates P0 and P1. Obviously, the mean values of
one-qubit observables A are unaffected by this measure-
ment. Then we let the system undergo n interactions with
the bath qubits: from the state Pj� j � 0, 1� in which it
had been found by the measurement, the system evolves
into the state r

�n�
j � Tn

j �Pj� � �1 2 c2n�j 1 c2nPj ac-

cording to (9). By the definition of equilibrium, pr
�n�
0 1

qr
�n�
1 � j; in particular, the mean value of A holds un-

changed. However, due to the information gained through
the measurement, now we have also access to the follow-
ing statistical quantity:

F
�n�
A �

q
p�Tr�d�n�

0 A��2 1 q�Tr�d�n�
1 A��2 , (18)

where d
�n�
j � r

�n�
j 2 Pj is the deviation from the mea-

sured state Pj after n interactions. F
�n�
A is a measure of

the fluctuations of A; the dissipative element can be seen
through the fact that, if F

�n�
A fi 0, then the fluctuations have

partly erased the information that we had obtained through
the measurement. Writing D�n� � �1 2 �cosf�2n� we find

F
�n�
A � D�n� 1

2 cosh�bE�
jTr�Asz�j . (19)

In the continuous time limit, D�n� is replaced by D�t� �
�1 2 e2t�T1 �. This is our FD theorem: the fluctuations F
are proportional to the dissipation D through a function of
the temperature. The fluctuations are absent at zero tem-
perature, while they are maximal at infinite temperature.
Usually one considers the fluctuations of the one-qubit
Hamiltonian h, in which case jTr�hsz�j � 2E the split-
ting of the energy levels.

We proceed now to discuss the link between dissipation
and entanglement under two complementary standpoints
(a third approach is given in Ref. [13]). The last equality
in (11) means that Uz�f, u, a� is equivalent to Vz�f, u� up
to local unitaries (LU); thus we can restrict to the Vz�f, u�
for the study of entanglement.

Dissipation and entangling power.—The entangling
power of a unitary operation U has been given different
definitions [15–17]. Here, we are interested in the crea-
tion of entanglement during the thermalization process. In
this context, the natural definition of the entangling power
of a thermalizing machine V � Vz�f, u� is

E �V � � max
r

E �Vr ≠ jVy� , (20)

with E �?� a measure of entanglement. As we said above,
for two qubits there exists a measure of entanglement C ,
called concurrence, that is computable, basically by rank-
ing the eigenvalues of a 4 3 4 matrix [9]. This may be a
097905-3
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tedious task on the paper, but is a trivial one for a com-
puter. Performing the optimization, we find for p $ q

C �Vz�f, u�� � C �VP1 ≠ jVy� � p sin2f . (21)

The maximal entanglement is thus produced when the in-
put state is the excited state j1�. The phases fluctuations,
measured by u, do not show up: the entangling power of
Vz�f, u� depends only on the dissipation, measured by f.
Moreover, if we want to introduce small fluctuations into
the bath [10] (and a fortiori in the continuous-time limit),
we must consider small values of f. In this limit, the en-
tangling power is increasing with dissipation.

Equivalence under LU.—We have noticed above that
Uz�f,u, a� is LU equivalent to Vz�f,u�. This is a
particular case of a general theorem [16] stating that
any unitary operation on two qubits is LU equivalent
to Ud � eiHd , where Hd �

P
i�x,y,z misi ≠ si . In our

case mx � my �
f

2 [ �0, p

4 �; and mz � 2
u

2 . Since
Vz�f, p 1 u� � �sz ≠ sz�Vz �f, u�, one can always
choose u [ �2p

2 , p

2 � within LU equivalence. Now, for
parameters in these ranges, the mi are uniquely determined
[18]. Therefore Uz�f, u, a� is LU equivalent to Vz�f0, u0�
if and only if f � f0 [ �0, p

2 � and u0 � u modp. In
conclusion, two thermalizing machines are LU equivalent
if and only if they are dynamically equivalent.

Irreversibility.—We conclude on some general consid-
erations about irreversibility. The thermalization process
that we described is certainly reversible, since it involves
only unitary operations. Thermalization appears as a con-
sequence of entanglement, not of measurements. The en-
vironment does not play the role of measuring apparatus,
but of “waste basket for information.” In fact, the informa-
tion encoded in the initial state of the system r is not lost
after the thermalization process, but is encoded in a dif-
ferent way, being spread between the system and the bath.
The initial state of the system can be reconstructed only if
one knows which qubits of the bath have interacted with
the system, and in which order. Without this knowledge,
any attempt of reconstruction of the initial state will fail
[13]. Thus, irreversibility arises here as the interplay of
two information processes: (i) the quantum information
on the initial state of the system is spread between the sys-
tem and the bath, still in a reversible way; (ii) the classical
information about the order of the collisions is lost, lead-
ing to the practical impossibility of running the process
backwards. As an application, one can define “safes” for
quantum information that can be “opened” with classical
keys [13].

In summary, we have discussed the family of the
thermalizing machines for two qubits. These unitary
operations can be decomposed into two processes,
dissipation and decoherence. Dissipation is linked to fluc-
tuations — and this is expected, although our FD theorem
is derived in a different framework than usual — and to
097905-4
the entangling power of the machine in the process. Both
dissipation and decoherence are related to equivalence
under local unitaries.
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