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Transition from Stick-Slip to Smooth Sliding: An Earthquakelike Model
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We present a detailed study of an earthquakelike model that exhibits a “transition” from stick-slip
motion to smooth sliding at a velocity of the order of those observed in experiments. This contrasts
with the many previous microscopic models in which the transition velocity is many orders of magnitude
too large. The results show that experimentally observed smooth sliding at the macroscopic scale must
correspond to microscopic-scale stick-slip motion.
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The problem of understanding tribological behavior is
very important [1,2]. Experiments show that in all cases
when the static frictional force is nonzero, fs . 0, the sys-
tem exhibits a transition from a stick-slip motion at low
velocities and spring constant to smooth sliding at high
velocities and/or a stiff system. This situation is typical
for most tribological systems except the ones with a liq-
uid lubricant. Therefore, it is observed in all systems at
low enough temperatures, when the lubricant is solid, or
when the lubricant is squeezed out from the contact region.
In experiments, the critical velocity of the transition from
stick-slip to smooth sliding is typically of the order yc �
1 mm�s [3]. In most cases, smooth sliding is a more de-
sired regime (one exception is bowing a violin); thus the
problem emerges as how to avoid or reduce the stick-slip
regime. However, to do this, first of all one has to under-
stand the mechanisms of stick-slip motion and the transi-
tion to smooth sliding.

A phenomenological model of this problem was devel-
oped in a series of papers [4]. It is based on a “contact-age
function” which depends on the previous history of the
system. The model leads to excellent agreement with ex-
periments, if the model parameters are suitably chosen.
Unfortunately, it remains purely phenomenological, in that
the corresponding equations cannot be derived from a
microscopic-scale simulation.

There are a number of molecular dynamics (MD) stud-
ies, and other microscopic models of the problem (e.g.,
see [2] and references therein). The lubricant film between
the two solids may be very thin due to normal pressure
between the sliding objects [5]. The thin film solidifies
[2,6], and the system is pinned for low driving forces, f.
If the force increases, the pinned state will remain until f
reaches a critical stress fs. At this point one of the solid
blocks starts to move, with the local drift velocity increas-
ing abruptly from zero to ys � y� fs�. At the onset of slid-
ing the lubricant film may or may not fluidize, depending
on the nature of the lubricant. If the amplitude of inter-
atomic interaction within the lubricant is larger than the
interaction between the lubricant and the solid substrate,
the solid-sliding regime is observed; otherwise the lubri-
cant melts at the onset of sliding [7]. Then, if f is reduced
0031-9007�02�88(9)�096102(4)$20.00
below fs, the block does not return directly to the pinned
state but continues to slide until f reaches some lower criti-
cal stress fb , where it returns to the pinned state. Hystere-
sis may appear due to two different mechanisms: inertial
effects [7] (similar to the bistability of an underdamped
driven atom in an inclined periodic potential), or the melt-
ing/freezing of the lubricant [8,9]. In both cases, however,
the velocity on decreasing of the force, yb � y� fb�, is of
atomic-scale order, yb � 1 10 m�s. The reason is that
the thin confined film is in close contact with the solid
substrates; thus the rate of energy exchange between the
lubricant and the substrates is of atomic-scale value. One
can show [10] that taking into account the large mass of
the sliding block does not change the results (contrary to
what was supposed in [8]), because the pinning begins with
the stopping of the first layer of the block, and the kinetic
energy of the sliding block is converted into a wave propa-
gating away from the interface which is finally absorbed in
the substrate (see also [11]). If the top block is driven with
a velocity y through an attached spring, we obtain smooth
sliding for y . yc and stick-slip sliding for y , yc as
shown in Fig. 1. Always, however, yc � yb is on the
atomic scale, e.g., yc � 1022c (c is the sound speed),
which is 6 orders of magnitude higher than the experimen-
tally observed values. Thus, the microscopic mechanism
of the stick-slip to smooth sliding transition observed in
MD simulation has little in common with the experimen-
tally observed macroscopic one.

In the present Letter we propose a variant of an earth-
quakelike model which demonstrates stick-slip behavior at
low velocities and changes to “smooth” sliding at high y.
The “transition” takes place at yc & a�t, where a is the av-
erage distance between junctions and t is an “aging” time
of a single junction. Reasonable values for these parame-
ters (e.g., a � 1026 1023 m and t � 1 103 s [1,2]) lead
to experimentally observed values of yc. The model pre-
dicts that experimentally observed smooth sliding actually
corresponds to atomic-scale stick-slip motion of individual
junctions and that the transition itself is a smooth one, if
one increases the resolution of the velocity increments.

Model.—We use a 2D variant of the Burridge-Knopoff
(BK) spring-block model of earthquakes [12], similar to
© 2002 The American Physical Society 096102-1
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FIG. 1. Spring force vs time when a spring with the elastic
constant k � 3 3 1024 is attached and moves with a constant
velocity y. (a) The case of a “solid” lubricant (Vss � 3, Vsl �
1�3, Vll � 1) for velocities y � 0.03, 0.1, and 0.3; (b) a “liq-
uid” lubricant (Vss � 3, Vsl � 1�3, Vll � 1�9) for velocities
y � 0.01, 0.03, and 0.3. The dependencies were obtained by
MD simulation of the system described in [7]. Vss , Vsl , and Vll
stand for the strength of the Lennard-Jones interaction inside the
substrate, between the substrate and lubricant atoms, and inside
the lubricant, respectively. The units are dimensionless.

that studied by Olami, Feder, and Christensen (OFC) [13].
Let the two blocks touch one another at (point) junc-
tions which pin the relative position of the blocks. The
junctions form an array �ri� randomly distributed in 2D
space, ri � ri0 1 �ji 2 0.5�Dr , where i � 1, . . . , N nu-
merates the junctions, ri0 corresponds to a uniform dis-
tribution (the triangular lattice), ji is a standard random
number, and the parameter Dr describes the amplitude of
randomness. The junctions interact elastically via springs
of strength kij; all junctions are connected through springs
of strength k with the fixed bottom block and coupled
frictionally with the top block moving with a constant
velocity y. The elastic constants are k � �kij� � rc2a,
where r is the mass density of the block, c is the trans-
verse sound velocity, and a � �rij� [14]. The potential
energy V �r� of the elastic interaction between two de-
fects separated by a distance r in a solid [15] as well as
on a crystal surface [16] follows the law V �r� 	 kint�r3,
where kint is a parameter describing the elastic properties
of the block. Thus, kij are determined by the expressions
kij � 3kint�jrj 2 rij

5
5�xj 2 xi�2��rj 2 ri�2 2 1�.
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We study a scalar variant of the model, when only the x
component of the force is considered. Let ui�t� represent
the shift of the ith junction from its nonstressed position.
The local force fi�t� associated with each junction is the

sum of the force from the bottom block, f
�b�
i �t� � kui�t�,

where ui�t� � ui�t0� 1 y�t 2 t0� due to frictional cou-
pling with the top block, and the elastic forces from other
junctions, f

�int�
i �t� � 2

P
j kij
uj �t� 2 ui�t��. As the top

stage moves, the surface stress at any junction increases
continuously. A single junction is pinned while fi�t� ,

fs�t�. When the force on a given junction, i, reaches the
critical value fi�t� � fs�t�, this junction starts to slide. At
this point, a rapid local slip takes place, during which the
local stress in the block drops to the value fb. The sliding
takes a time t , 10210 s [2,7] and thus can be considered
as an instantaneous one. The coordinate ui of the relax-
ing junction (instantly) changes to the new position ui �
� fb 1

P
jfii kijuj���k 1

P
jfii kij�. The slip of one junc-

tion redefines the forces on its neighbors; this can result
in further slips (an avalanche); the triggered “earthquake”
will stop when there are no junctions left with a force above
the threshold. Then the junctions are pinned again, and the
whole process repeats itself. As the initial configuration
we use random shifts of all junctions, ui�0� � jiDxini.

Following the discovery of self-organized critical (SOC)
behavior in a BK-type model [17], many studies of this
type were performed [18]. If we set Dr � 0, our model
reduces to the OFC model [13] except that we use the trian-
gular lattice instead of the square one. For periodic bound-
ary conditions (PBC) the steady state of the OFC model is
always periodic [19]. However, for open boundary condi-
tions (OBC) the model exhibits SOC behavior; the proba-
bility distribution P�s� of the number of relaxations s
in a single avalanche follows the power law P�s� ~ s2x

with the exponent x continuously varying with kint (or y).
However, in both cases the OFC model does not demon-
strate a transition from stick-slip motion to smooth sliding.

The main new feature of our model is that we use the
“age-function” idea of the phenomenological models [4],
i.e., we assume that the static frictional force depends con-
tinuously on the time of stationary contact of a given junc-
tion. We used a simple exponential dependence (let t � 0
correspond to the moment when the junction is pinned),

fsi�t� � fs 1 � fsm 2 fs� 
1 2 exp�2t�t�� . (1)

Notice that fsi�t� reinitializes every time the junction re-
laxes and, thus, it is different for different junctions.

Without loss of generality in what follows, we put
k � 1, a � 1, t � 1, and fs � 1. In our simulations we
typically used fsm � 2fs which corresponds, e.g., to the
squeezing of a two-layer lubricant film into a one-layer
configuration [7], fb � 0.1, Dr � 0.3, Dxini � 1, kint �
0.1 (recall 12kint � k), and N * 103 (for real systems
N�A � 102 105 cm22, e.g., see [1]), although we varied
all these parameters over a wide range.

A rather comprehensive study of the 1D BK-type model
for the parameters suitable for the frictional process and
096102-2
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with incorporation into the model the fs�t� dependence (1)
has been done by Persson [14]. The important result of his
study is that this type of model can explain the logarithmic
time dependence of relaxation processes at nonzero tem-
peratures: it is due to thermally activated processes which
occur near the sharp cutoff at f � fs in the distribution of
surface stresses. Unfortunately, the resulting f�y� depen-
dences do not reproduce the experimental ones very well.
As we show below, the reason lies in the one dimension-
ality of his model.

Simulation results.—We studied several variants of the
model, such as 1D and 2D models, models with short- and
long-range interaction between the junctions, and also a
“stimulated” variant of the model, where we took into ac-
count that when a junction relaxes, it emits a wave burst
which stimulates other junctions to relax, too. All vari-
ants were studied for a wide range of model parameters.
Finally we came to the conclusion that in order to repro-
duce typical experimentally observed f�t� dependencies,
the “minimal” model must (a) be 2D, (b) incorporate the
fs�t� dependence (1), and (c) have a random spacial distri-
bution of contacts, Dr fi 0. A typical dependence of the
total frictional force f�t� for different velocities y is pre-
sented in Fig. 2a.

When y * 1, our model behaves similarly to the OFC
model. The difference is that, due to the randomness of the
junctions’ distribution, Dr fi 0, the function f�t� shows a
complicated, nonperiodic behavior even for PBC, and the
distribution of avalanche sizes is exponential both for PBC
and OBC as shown in Fig. 3b (the power-law distribution
is observed for Dr � 0 with OBC only). The average size
of the avalanches can be estimated in the following way.
At t a given (ith) junction, pinned for an “age” ti , relaxes.
Then the force on a neighboring ( jth) junction abruptly
increases by the amount Dfj � 
 fsi�ti� 2 fb�b, where

FIG. 2. (a) Total frictional force f�t� vs time for velocities y �
0.1, 0.3, 1, and 3. N � 30 3 34, fb � 0.1, fs � 1, fsm � 2,
kint � 0.1, Dr � 0.3, and Dxini � 1. (b) Details of the transi-
tion for velocities around yc: y � 0.42, 0.53, 0.75, and 1.
096102-3
b � kij��k 1
P

j0fii kij 0�. For the triangular lattice with
the parameters kij � k we have �b� 	 1

7 . (In 1D one has
�b� 	 1

3 .) The nearest neighboring junction, j, will relax,
too (and, thus, the avalanche will start), if fj�t 1 0� �
fj�t 2 0� 1 Dfj $ fsi�tj�. In the high-velocity regime
we can put fsi 	 fs, because �ti� ø t. The distribution
of forces P � fi� in this case has a simple form [14]: it
is constant for forces within the interval fb , fi , fs

and zero outside it (in what follows we assume fb � 0
to shorten the notation).

Thus, the probability p that the jth junction will relax,
i.e., that fj�t 2 0� $ �1 2 b�fs, is equal to p � b. Be-
cause there are six nearest neighbors around the “starting”
junction i, the probability to have an avalanche of size
s $ 2 is Ps�2� � 6p. Then, the jth junction may stimu-
late its own (five) nearest neighbors to relax; thus the
probability to have an avalanche of size s $ 3 is Ps�3� �
Ps�2�5p. Iterating this process, we have Ps�s� � Ps�s 2

1�np, or Ps�s� ~ �np�s, where 3 # n # 5 [n � 5 if the
avalanche forms a one-dimensional nonintersecting curve
and n 	 3 when the avalanche is compact (2D)]. Using
Ps�s� �

R`
s ds0 P�s0�, we obtain for the avalanche distri-

bution P�s� ~ exp�2s�s̄�, where the average size of the
avalanche is s̄ � 21� ln�np�. Taking n � 5 and p 	 1

7 ,
we obtain s̄ 	 3 for the triangular lattice. This is in agree-
ment with simulation which yields s̄ 	 4 for the y � 3
case in Fig. 2. The fluctuations of the total frictional
force scale as ��� f�t� 2 � f�t����� ~ N21�2 with the number
of junctions N . Note that similar considerations for the
one-dimensional system lead to n � 1 (the avalanche can
expand in one direction only) and p 	 1

3 , so that s̄ 	 1.
Hence, for large y we have np , 1, so that s̄ , `, so the
avalanche cannot occupy the whole system.

When y & 1, the model exhibits stick-slip behavior as
can be seen from Fig. 2a [20]. The distribution of ava-
lanche sizes possesses two peaks as shown in Fig. 3a, the
first at s � 0 with an exponential distribution as above,
and the second at s � N ; i.e., now an avalanche can oc-
cupy the whole system. Thus, at low velocities, when the
time dependence of the static frictional force is important,
the slipping of junctions becomes synchronized. This can
be explained qualitatively as follows. As was shown by
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FIG. 3. The distribution of avalanche sizes P�s�N� at (a) y �
0.1 (solid curve) and 0.2 (dotted curve); (b) y � 3 (solid curve)
and 5 (dotted curve). The inset in (b) is a log-linear plot showing
the exponential dependence. All data is for PBC with N �
60 3 68, and the same parameters as in Fig. 2.
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Persson [14], the distribution of forces P � fi� now has a
more complicated form; it is constant for forces 0 , fi ,

fs (recall fb � 0) and monotonically decreases to zero
for forces fs , fi , fsm. For purposes of an estimation
let us assume that this decrease may be described by a
simple linear dependence, P � fi� � 2� fsm 2 fi��� f2

sm 2

f2
s �. The condition that after the relaxation of the ith

junction, the nearest neighboring junction jth will relax
too, now takes the form fj�t 2 0� $ fsi�tj� 2 bfsi�ti�.
The probability that the jth junction will relax is equal
to p �

Rfsm

f 0 df P � f� � � fsm 2 f 0�2�� f2
sm 2 f2

s �, where
f 0 � ��1 2 b�fsi�ti��. With the parameters used above,
if we take � fsi�ti�� 	 0.5� fsm 1 fs�, we obtain p .

1
7 .

Moreover, if � fsi�ti�� , 1.43, we obtain p .
1
5 , so that

np . 1, and the avalanche will expand over the whole
system.

Finally, the transition is smooth (see Fig. 2b); it is nei-
ther discontinuous (first order) nor continuous (second
order) contrary to predictions of the phenomenological
models [4].

Thus, the proposed variant of the earthquakelike model,
which combines features of the OFC model and the phe-
nomenological one, resolves the long-standing disagree-
ment between experimentally observed yc � 1 mm�s and
MD results of yc � 1 m�s. A single junction itself has
to behave according to MD predictions; it should exhibit
hysteresis and atomic-scale stick-slip motion. The experi-
mentally observed smooth sliding corresponds to atomic-
scale stick-slip motion of many junctions. This statement
is in agreement with recent experimental results [21]. The
macroscopic-scale stick-slip behavior emerges due to the
concerted motion of the many junctions due to their inter-
action, and the transition itself is smooth. This prediction
should be checked experimentally: first, the fluctuations of
f in the “smooth” sliding regime should scale as N21�2 ~

1�
p

A with the total area A of the contact, and second,
a careful analysis of f�t� should show a continuous spec-
trum for atomic-scale stick slip, while for steady sliding the
spectrum should exhibit characteristic peaks at the wash-
board frequencies [7,14].

Two questions still remain unclear. First, the nature of
the junctions was not specified in the model. They may
correspond to real asperities, or to “solid islands” in the
fluidized lubricant [14]. Second, the mechanism and pre-
cise fs�t� dependence remain unexplained. It may be due
to the squeezing and aging of individual contacts, or due
to the gradual increasing of the contact area, with the co-
alescing of smaller contacts into fewer larger contacts. All
these processes involve plastic deformations and thus are
characterized by macroscopic-scale times t � 1 103 s.
Careful experiments and/or large-scale simulations of mul-
ticontact interfaces are needed to resolve these remaining
questions.
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