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Elastic interactions responsible for the stability of nanometer-scale patterns in ultrathin, bulk-
immiscible-alloy films are analyzed within the context of a hybrid atomistic-continuum model. Two
apparently different descriptions of alloy film behavior, a continuum elasticity theory describing a
deformable substrate and a rigid substrate atomistic scheme, emerge naturally as limiting cases on
long and short length scales, respectively. Quantitative first-principles calculations explain the origin
of recently observed nanoscale patterns in Co-Ag�Ru(0001), and reveal a surprising failure of the
continuum model.

DOI: 10.1103/PhysRevLett.88.096101 PACS numbers: 68.35.Md, 68.35.Dv, 68.55.Jk, 68.55.Nq
Recently a growing number of experimental obser-
vations have reported the spontaneous formation of
nanoscale domain structures on morphologically flat,
compositionally inhomogeneous crystalline surfaces.
Examples include the hexagonal ordering of “holes”
in strained Ag monolayers after exposure to sulfur [1],
the formation of monodisperse N-vacancy clusters on
In12xGaxN�0001� [2], and lateral composition modula-
tions in thin �1 4 ML� films of size-mismatched, bulk
immiscible Co-Ag and Fe-Ag alloys on Mo(110) [3]
and Ru(0001) [4,5]. An explanation for the stability
of periodic surface structures was given by Marchenko
[6] and later by Ng and Vanderbilt [7] who showed,
using continuum elasticity models, that the energy of
compositionally nonuniform surfaces can be lowered
through the formation of periodic stress domains. Within
these models it is well understood that nanoscale patterns
emerge as a result of the competition between short-range
clustering tendencies (e.g., energy cost associated with
line interfaces between two immiscible surface alloy
phases) and long-range dipolar (e.g., elastic) interactions
that favor mixing.

While the continuum theories of Refs. [6,7] success-
fully explain observed morphologies, few studies have
attempted to explore their range of applicability quanti-
tatively. In particular, it is not clear that the continuum
elasticity treatment of stress relaxation is accurate when
the characteristic length scale of composition modulation
is only a few nanometers. At small wavelengths the atom-
istic structure and the details of surface-substrate bonding
likely play a dominant role, while the continuum theory is
strictly valid only at large wavelengths. Furthermore, a key
question arises from the point of view of controlling self-
assembly that is difficult to address quantitatively within
the framework of the continuum theory, namely how to
predict the preferred wavelength of patterned structures in
a specific system from first principles.

In this paper we consider a pseudomorphic monolayer
film of an A12cBc alloy. The total surface energy can
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be thought of as a sum of two contributions: a direct
“chemical” interaction energy due to quantum-mechanical
bonding effects, and an elastic contribution due to atomic
size mismatch. The distribution of alloy species on the
surface is described by pseudospin variables Si assuming
values 11 �21� if the lattice site i is occupied by an
atom of type A �B�. The direct chemical interactions can
be conveniently expressed in an Ising-like form [8,9]:
Hchem �

1
2

P
i,j VijSiSj 1

1
3!

P
i,j,k VijkSiSjSk 1 . . . ,

where Vij ,Vijk , . . . are effective pair and multibody
interactions. As with the case of bulk alloys [8], the
above Hamiltonian can be utilized to examine the ordering
tendencies of surface alloys. Such a study of Au-Pd
alloys on Ru(0001) was carried out by Sadigh et al. [10],
who found that, in Au-Pd, the interactions are very short
ranged. Standard ab initio electronic-structure computa-
tions could be used to generate Vij and Vijk. However,
for alloys with large size mismatch, long ranged elastic
interactions render the inversion procedure used by Sadigh
et al. impractical, as its application to such systems would
require many large unit cell, first principles computations.
The model developed here provides a framework for
generating an accurate Hamiltonian requiring a limited
number of ab initio energies and thus establishes an im-
portant link between atomistic simulations and continuum
theories. Additionally, the atomistic/continuum model
presented below provides a clear framework for analyzing
the physical origin of the interatomic interactions, i.e., the
relative importance of elastic, chemical, and substrate-
relaxation terms.

We start from a coarse-grained model of the
film1substrate system, shown in Fig. 1. The system
is split into two separate, but interacting regions: the
top surface alloy layer is treated atomistically, while the
energy of the underlying substrate can be treated from
discrete (lattice) or continuum theories of elasticity. This
subdivision enables us to capture the effects of elastic
relaxations on both atomistic and continuum length scales.
The total Hamiltonian can be expressed as a sum of three
© 2002 The American Physical Society 096101-1
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FIG. 1. Partitioning scheme leading to Hamiltonian (1).

terms, H � Hsurf 1 Hbulk 1 Hint, corresponding to the
surface energy, substrate elastic energy, and interaction
between the substrate and surface atoms, respectively. The
surface layer is described using configuration variables
Si and atomic displacements ui . The substrate degrees
of freedom, wi , describe elastic deformations in the
subsurface layer. A generic Hamiltonian for the system
shown in Fig. 1 can be written as

H �
1
2

X
i,j

µ
JijSiSj 1 2

X
a

Ga
ijuiaSj 1

X
a,b

F
ab
ij uiaujb

∂

1
1
2

X
i,j

X
a,b

T
ab
ij wiawjb 1

X
i,j

X
a,b

A
ab
ij uiawjb , (1)

where Latin indices run over lattice sites and Greek indices
label Cartesian components. The surface energy Hsurf is
represented by the first term in Eq. (1) in a form that is
widely used in studies of bulk alloys [11,12]. The first
term in the parentheses is the surface chemical energy,
characterized by Ising-like pair interactions Jij , the third
term provides the elastic deformation energy of the surface
layer, where F

ab
ij is a surface force constant matrix, while

the second term, familiar from the theory of Kanzaki forces
in bulk alloys [11], leads to composition-induced surface
stresses. The elastic energy of the bulk substrate, Hbulk,

is represented by the second term in Eq. (1), where T
ab
ij

is related to the inverse of the substrate Green’s function.
Finally, the surface-substrate interaction Hint is given by

the last term in Eq. (1), where the matrix A
ab
ij can be

interpreted as a corrugation potential. It determines the
force on the substrate below site j due to a surface atom
displacement at site i. The Hamiltonian (1) resembles
energy functionals commonly used in continuum theories
of film structure [13].

Conditions of mechanical equilibrium for the Hamilto-
nian (1) give a system of equations that determines equi-
librium values of the displacements ui and wi:X

j,b

F
ab
ij ujb � 2

X
j

Ga
ijSj 2

X
j,b

A
ab
ij wjb, (2)

X
j,b

T
ab
ij wjb � 2

X
j,b

A
ba
ji ujb . (3)

These equations can be solved using a Fourier transform
(the general technique is discussed in Ref. [12]). Introduc-
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ing the structure factor S�k� �
1
N

P
i Sie2ikRi , the Ham-

iltonian (1) can be expressed as

H �
1
2

X
k

V �k�jS�k�j2, (4)

where V�k� �
P

j Vije2ikRj is a Fourier transform of ef-
fective pair interactions. V �k� includes the effects of all
chemical and elastic interactions in the system. As a re-
sult, an enormous simplification of the original problem
has been achieved, since the effects of surface and sub-
strate relaxations are included exactly in the framework of
a discrete lattice model.

The general expression for V �k� is rather complicated,
but interesting insights can be gained by considering
the limiting case of a very stiff substrate, relevant
to Co-Ag�Ru. For this system, first-principles cal-
culations [5] for energetically favored striped super-
structures show that wia ø uia , i.e., displacements in
the surface layer are much larger than the substrate de-
formation. This result can be rationalized by noting that,
due to reduced coordination, it is much easier to slide the
surface layer with respect to the substrate that to deform
bulk Ru. Neglecting the term with wi in Eq. (2), we
find that ua�k� � 2S�k�

P
b�F�k�21�abGb�k�, while

substrate displacements are found by inverting Eq. (3).
In this approximation, the substrate relaxes in response
to a force created by surface atom displacements:
Fa�k� � 2

P
b Aab�k�ub�k�. Notice, however, this

“stiff substrate” limit wia ø uia does not imply that the
substrate elastic strain energy vanishes completely. The
final two terms in Eq. (1) must still be evaluated, yielding
the following expression for V�k�:

V �k� � G�k�y�F�k�21 1 J�k�yT�k�21J�k��G�k� ,
(5)

where we have introduced matrix notation for Cartesian
components, “y” denotes conjugate transpose, andJ�k� �
A�k�F�k�21. The more general case, including a distinc-
tion between soft and stiff substrate limits, will be de-
scribed elsewhere.

While it is possible to directly compute most of the ma-
trices entering Eq. (1) for any given system, it is desirable
to express them, and therefore V �k�, in terms of a few
simple physical parameters. To this effect, we consider a
model where the surface energy Hsurf and surface-substrate
interaction Hint terms are found from the two-dimensional
Frenkel-Kontorova scheme [14]. The first (chemical
energy) term in the parentheses in Eq. (1) is represented
by nearest-neighbor (NN) chemical interactions J. Elastic
interactions within the surface layer [the second and third
terms in the parentheses in Eq. (1)] are modeled by har-
monic springs with stiffnesses Kij and equilibrium bond
lengths a 1 Dij , where a is the substrate lattice constant.
Expressing the first-order change in interatomic separation
as drij � �uj 2 ui� ? eij , where eij is a unit vector
from surface site i to site j, the surface elastic energy
is given by 1

4

P
i,j Kij�drij 2 Dij�2. We neglect all
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interactions beyond nearest neighbors and assume that NN
spring constants K are independent of atom types. The
equilibrium bond length between the atoms of type A�B�
is a 1 D (or a 2 D), and the A-B bondlength is lattice
matched to the substrate, i.e., we set Dij � D

Si1Sj

2 .
These choices limit the summation over i and j in Eq. (1)
to on-site and NN-pair terms, where G

a
ij � KDea

ij and

F
ab
ij � Kdij

PNN
l ea

il e
b
il 2 Kea

ije
b
ij . For the Hint term,

we assume that all surface atoms experience identical,
radially symmetric corrugation potentials linking each
surface atom to the substrate deformation directly be-
low. In other words, the interaction energy is given by
Hint �

A
2

P
i�ui 2 wi�2. Finally, the elastic energy of the

substrate, Hbulk, is described using the half-space Green’s
function of the isotropic continuum elasticity theory [15].
The latter depends on �1 2 n2��E, where n is the Poisson
ratio and E is the Young’s modulus of the bulk substrate.

After straightforward, but somewhat lengthy algebraic
manipulations, an explicit form of V �k� for a given surface
can be found [16]. As an illustrative example, we give an
analytic expression in the one-dimensional case, applicable
to �100� stripes on the �0001� surface of a stiff hexagonal
substrate:

V �k� � 28J 0 sin2�kd�2� 2
3KD2 sin2�kd�

A
K 1 6 sin2�kd�2�

2
1 2 n2

ES0k
jAu�k�j2, (6)

where d � a
p

3�2 is the separation between consecutive
rows of atoms and S0 � a2

p
3�2 is the surface area per

atom. J 0 � J 1 KD2�4 represents a renormalized NN
interaction. Fourier components of surface atom displace-
ments are given by

u�k� � 2
i
p

3D sin�kd�
A
K 1 6 sin2�kd�2�

. (7)

The physical meaning of the individual terms in Eq. (6)
is as follows. The first term represents the energy, elastic
and chemical, stored in a system where all atoms reside on
ideal lattice sites. The second term is the energy lowering
due to lateral relaxations within the surface layer and it can
be shown that this contribution can be described by inter-
actions Vn that decay exponentially with distance similar
to those obtained in the widely used Frenkel-Kontorova
scheme [14]. The final term is the energy gain due to
substrate relaxations. It gives rise to long range elastic
interactions which decay in real space as 1�R3 and is
analogous to the Marchenko [6] and Ng-Vanderbilt [7]
continuum results.

Notice that the V�k� derived above depends on just four
parameters: (i) KD2 sets the energy scale for elastic re-
laxations, (ii) a � 4J��KD2� gives the relative strength of
chemical and elastic energies, (iii) k � K�A determines
surface atom relaxations u�k� and, more importantly,
the range of elastic interactions associated with these re-
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laxations, and (iv) the ratio b � 6Kd�1 2 n2���ES0�
determines the magnitude of the substrate relaxation con-
tribution to V �k�. The parameter D scales the magnitude
of the displacement field u�k�, but it affects V �k� only
via the combination KD2. In the long-wavelength limit
k ! 0, the substrate relaxation term always dominates,
since it behaves as 2

KD2

2 b�kd� 1 O�k3� while the other

terms go as 2
KD2

2 �1 1 a 1 6k� �kd�2 1 O�k4�.
The functional form of V �k� allows one to predict the

morphology of the equilibrium surface phase. A partic-
ularly important quantity is the position of the minimum
in V �k�, since it determines the wavelength of the ener-
getically most unstable mode in a disordered surface alloy
(see Fig. 2). Existence of such a minimum is guaranteed,
since with the inclusion of elastic interactions, V �k� ~ 2k
as k ! 0, a property that guarantees a finite periodicity
of the energetically preferred composition modulation. In
what follows, we assume that J is negative, corresponding
to the physically interesting case of chemical tendency to
phase separate. Explicit expressions for the minimum in
V�k� can be derived from Eq. (6) in the following limits:

(a) The substrate relaxation contribution can be ne-
glected and the minimum wave vector kmin is determined
by the sum of the interfacial energy and surface relaxation
terms in Eq. (6). It is shown below that Co-Ag�Ru(0001)
belongs to this class of systems. Then the wave vector
of the most unstable mode is given by kmin �
1
d � 4

23ak �1�4 1
113a

3d � 1
26ak �3�4 1 O�� 1

2ak �5�4�, i.e., it de-
creases with increasing jakj � j4J��AD2�j. For rea-
sonable values of a and k, kmin is on the order of a
fraction of Å21. Therefore, phase separating surface atom
interactions and a weak substrate corrugation potential can
combine to produce nanoscale composition modulations.

(b) For sufficiently strong clustering tendencies repre-
sented by the NN chemical interaction J, the surface re-
laxation contribution alone cannot overcome the tendency
to phase separate. Mathematically, the sum of the first
two terms in Eq. (6) produces a minimum at k � 0 when
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FIG. 2. First-principles pair interactions V �k� for Co-Ag
on Ru(0001).
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1 1 a 1 6k , 0, which is a hallmark of tendency to
phase separate [12]. In this case, the substrate relaxation
term plays a major role, since it guarantees the existence
of a minimum in V �k� at nonzero kmin �

2b

2d�11a16k� . On
the length scale of 2p�kmin the total energy is accurately
represented by a sum of interfacial line tension (which
includes surface atom relaxation energy) and substrate-
mediated dipolar repulsion terms. The continuum theories
of Marchenko [6] and Ng and Vanderbilt [7] can be used
to study the energetically stable stripe and droplet patterns.

As an illustrative example, Fig. 2 shows V �k� for Co-Ag
on Ru(0001), obtained using previously published local
spin-density functional (LSDA) results for this system [5].
The values of J, k � K�A, and KD2 were determined
by fitting the calculated formation energies of periodic
stripe structures at 50�50 composition. The ratio b was
obtained using the calculated surface stress difference of
Co and Ag monolayers on Ru(0001) and calculated elastic
constants of hcp Ru for an uniaxial deformation perpen-
dicular to the [0001] direction. This procedure yields
values KD2 � 1185 meV, J � 259 meV, k � 0.66,
and b � 0.91. LSDA energies of stripes were reproduced
to better than 5 meV�atom. The most striking observation
from Fig. 2 is the smallness of the substrate relaxation
term. The energy gain due to substrate relaxation is
only a few meV�atom in this system. It is thus an
excellent approximation to assume that the position of the
minimum in V �k� is determined by the first two terms
in Eq. (6), i.e., Co-Ag alloys on Ru belong to case (a)
considered above. Thus, the unusual disordered alloy
structures observed experimentally in Ref. [5] can be
attributed to Frenkel-Kontorova-type elastic relaxations
within the surface layer and do not arise from substrate
relaxation contributions. The predicted minimum wave-
length for composition modulation �2p�kmin � 1.6 nm�
corresponds well with the feature size observed by
scanning tunneling microscopy in Ref. [5] in annealed
Co-Ag�Ru(0001) films.

The dominant contribution from relaxations within the
surface layer has important consequences for the structure
of the alloy film. Specifically, the equilibrium displace-
ment fields associated with this term show an exponential
decay, with a decay constant that is a function of k �
K�A [which can be deduced from Eq. (7)], whereas the
substrate-mediated interactions are associated with slowly
decaying dipolar strain fields. This important distinction
between the present model and the continuum-dipolar the-
ory should hold generally for surface-alloy systems on
stiff substrates, and is amenable to experimental verifi-
cation through measurements of displacement fields by
surface-sensitive microscopy (e.g., STM) or x-ray scatter-
ing methods.

In conclusion, we have developed a model of ultra-
thin alloy films that captures two physically distinct limit-
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ing behaviors: In the long-wavelength limit, our model
reproduces the continuum elasticity theory of Ref. [6],
while at short wavelengths it is analogous to the atom-
istic Frenkel-Kontorova scheme [14]. We demonstrate how
the parameters of our model can be determined from first-
principles electronic-structure calculations to predict the
preferred size scale of self-assembled patterns in real sys-
tems. Results for the Co-Ag surface alloy on Ru(0001),
where nanoscale pattern formation has been recently ob-
served in Refs. [4,5], show that in this case the energet-
ics is dominated by relaxations within the surface layer,
while the substrate relaxation contributes a very small
amount (less than 10%) to the total formation energies of
stable nanostructures. These findings point to limitations
of the continuum theory [6,7] in describing structures with
nanometer periodicity.
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