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Spiral Cracks in Drying Precipitates
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We investigate the formation of spiral crack patterns during the desiccation of thin layers of precipitates
in contact with a substrate. This symmetry-breaking fracturing mode is found to arise naturally not from
torsion forces but from a propagating stress front induced by the foldup of the fragments. We model their
formation mechanism using a coarse-grain model for fragmentation and successfully reproduce the spiral
cracks. Fittings of experimental and simulation data show that the spirals are logarithmic. Theoretical
aspects of the logarithmic spirals are discussed. In particular we show that this occurs generally when
the crack speed is proportional to the propagating speed of stress front.
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Fracture of solids produces a large variety of fascinat-
ing patterns. Straight and wiggling cracks in fragmented
dried out fields, rocks, tectonic plates and paintings, and
the self-affine fractured surfaces are just a few-well studied
examples. Understanding fracture and fragmentation phe-
nomena is of increasing interest in physics and engineering
[1]. Many recent studies have analyzed the morphology of
fractured surfaces and fracture lines [2], most of which
show a cellular and hierarchical pattern. Concomitantly,
successful models have been proposed to describe crack
propagation and to reproduce the observed structures [3].

Apart from the cellular type, spiral, helical, and in gen-
eral smoothly curving fracturing modes are known in mate-
rial science [4]. Most of the known spiral cracks are either
due to imposed torsion (twist), as in the spiral fracture of
the tibia [5], or due to geometric constraints, as in the frac-
ture of pipes [6]. Spiral cracks can, however, also arise
in situations where no obvious twisting is applied, so that
the symmetry is spontaneously broken. An example of this
was recently given by Hull [7] in the study of the shrinkage
of silica-based sol-gel. Similar structures were reported by
us for the postfragmentation process of a thin layer of dry-
ing precipitate [8]. The formation of spiral cracks under
specific conditions was also recently considered by Xia
and Hutchinson [9]. In this Letter, the mechanism lead-
ing to this special cracking mode shall be investigated and
modeled. We shall discuss some mathematical properties
in the shape of the spiral and reproduce them by computer
simulations.

The experimental conditions leading to such structures
are simple; one can do that without a laboratory. The first
step is to produce by chemical reactions a fine suspension
of precipitate. The spiral cracks are not restricted to one
peculiar material, as we obtain them with different com-
pounds, including nickel phosphate [Ni3�PO4�2, from the
reaction between NiSO4 and Na3PO4], ferric ferrocyanide
[Fe4�Fe�CN�6�3, from K4�Fe�CN�6� and FeCl3], and fer-
ric hydroxide [Fe�OH�3 from FeCl3 and NaOH]. The re-
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acting salts are diluted in distilled water to concentrations
between 0.3%–10% for all reactions. Mixing the two re-
acting solutions produces the desired compound. The so-
lution is then left to sediment and the dissolved ions (Na1,
K1, Cl2, SO2

4 , . . .) are removed by rinsing with distilled
water. This gives us an aqueous suspension, which is then
poured into a Petri dish and allowed to dry. During drying
a thin solidified layer is formed which is then fragmented
into isolated parts (Fig. 1a).

FIG. 1. Fracture of nickel phosphate precipitate at different
length scales: (a) Typical fragmentation pattern inside a Petri
dish; (b) spiral and circular structures inside the fragments;
(c) close-up of a spiral crack; (d) traces of the spiral cracks
left on the glass surface.
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For fine and thin precipitates (grain size smaller than
a few hundred nm and layer thickness between 0.2 and
0.5 mm), regular spirals as well as other smoothly curv-
ing cracks (such as circles, ellipses, and intersecting arcs)
finally show up inside the fragments (Fig. 1b). Depend-
ing on the grain size and layer thickness the size of these
fascinating structures varies widely, ranging from several
hundred microns to about 5 mm. Easily overlooked by the
naked eye, they are revealed under a microscope (Fig. 1c).
Moreover, after removal of the layer, they leave visible
marks on the glass surface (Fig. 1d).

By digitally analyzing their shape we found that all those
spirals are approximately logarithmic, i.e., described by the
functional form

r�u� � r0eku , (1)

where r0 and k are constants, with k determining the over-
all tightness of the spiral. r and u are the polar coordinates
in plane (by using our technique, u can take any real value,
not restricted to �0, 2p�). A characteristic fit is presented
in Fig. 2, showing their logarithmic nature.

Read from the slope, the values of k from 14 instances
of spirals are summarized below, for two different
compounds and five different layer thicknesses. For
ferric ferrocyanide, we obtained 0.075 (sample I), 0.067
(sample I), 0.080 (sample I), 0.082 (sample I), 0.086
(sample I), 0.059 (sample II), and 0.072 (sample II); for
nickel phosphate, we obtained 0.078 (sample III), 0.075
(sample III), 0.063 (sample III), 0.061 (sample III), 0.061
(sample IV), 0.078 (sample V), and 0.058 (sample V).
Some observations can be made at this point.

(i) The logarithmic spiral, also known as the equi-
angular spiral, has been studied extensively since the 17th
century by Descartes, Torricelli, and Jacques Bernoulli.
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FIG. 2. A spiral crack in ferric ferrocyanide precipitate and a
fit of its trajectory in polar coordinates. The linear fit has a slope
of 0.072.
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In addition to the well-known example in nautilus shells
[10], it also describes the shapes of the arms of some
spiral galaxies, such as NGC 6946 [11], and the flight
path of a peregrine falcon to its prey [12].

(ii) The apparent length scale r0 from Eq. (1) can
be absorbed in the phase r�u� � ek�u2u0�, with u0 �
2 ln�r0��k. This demonstrates that the logarithmic spirals
are scale free.

(iii) Surprisingly, the majority of experimentally mea-
sured values of k fall between 0.06 and 0.08. The fluc-
tuation among different spirals of the same sample is of the
same magnitude as that among different samples with dif-
ferent compounds and thicknesses. This indicates a mecha-
nism independent of layer thickness and precipitate type
for the formation of the observed spiral cracks.

(iv) There are pronounced oscillations accompanying
the linear trend in all our fittings, as exemplified in Fig. 2.
These oscillations are almost periodical, and increase with
r (note the logarithmic scale).

In situ observations under the microscope during the
desiccation process suggest the following mechanism. The
spirals and circle-shaped structures are formed only af-
ter the primary fragmentation process is over. Because of
the humidity gradient across the thickness, the fragments
gradually fold up and detach from the substrate (Figs. 3a
and 3b), generating large tensile stress in the radial direc-
tion, at and normal to the front of the detachment. The
extent of the attached area shrinks as the ring-shaped front
advances inward due to ongoing desiccation. When the
stress at the front exceeds the local material strength, a
crack is nucleated (Fig. 3b). Since the nucleation is sel-
dom symmetrical with respect to the boundaries, the crack
tends to propagate along the front in one preferred direc-
tion where more stresses can be released. In the absence

FIG. 3. The proposed mechanism for generating spiral cracks:
(a) After primary fragmentation, a fragment folds up due to des-
iccation with a shrinking detachment front, (b) crack nucleation
along the front, and (c) the advancement of the front from time
t1 to t2 leads to an inward propagating spiral crack.
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of a further nucleation event, by the time the crack growth
completes a cycle the front has already advanced, forc-
ing the crack to turn farther inward, resulting eventually
in a spiral crack (Fig. 3c). Since the stresses on the top
of the layer are mostly relieved by folding, they are con-
centrated at the layer-substrate interface. Therefore, the
spiral runs like a tunnel, with 20%–60% penetration into
the layer thickness. The patterns being largely spiral mean
that crack propagation is favored over nucleation, other-
wise we would have observed more cylindrical concentric
structures.

We now investigate with more detail the conditions un-
der which the logarithmic spiral cracks can be produced.
Denote the speed of the inward propagating drying front
by u and the speed of the crack tip by y. We choose the
origin as the center of the spiral. The trajectory of the
crack is parametrized by the linear distance s, the radial
distance r, and the polar angle u, as shown in Fig. 4.

For infinitesimal du, we have dl � rdu, �ds�2 �
�dr�2 1 �dl�2, and tanF � dr�dl. Then
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Eliminating du�dt from (2) and (3) we obtain

dr
du

�
ur

p
y2 2 u2

� kr , (4)

where

k �
u

p
y2 2 u2

� tanF . (5)

For constant k, we get (1), i.e., a logarithmic spiral. Physi-
cally, since k�u, y� is a function of u�y alone, this result
implies that the general condition for a logarithmic spiral
to occur is to have a constant ratio between the two veloci-
ties, despite the possibility that the actual dynamics may
be very complicated and neither speed is constant. In other
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FIG. 4. Parametrization of the crack path.
095502-3
words, the logarithmic spiral structure is surprisingly ro-
bust to dynamical details. On the other hand, since it is
reasonable to expect a quasistatic crack to follow the di-
rection of maximal stress relief, the geometric result of a
constant angle F suggests that the orientation of the maxi-
mal stress component is constantly bending away from the
instantaneous direction of propagation. The fact that all
fitted values of k fall within a narrow range means that
the degree of such bending is insensitive to details like
the thickness or the chemical composition. More theoreti-
cally, one could ask if the Cotterell and Rice criterion [13]
applies here: whether the stress intensity factor, KII, van-
ishes along a constant inclination as the crack propagates
under the influence of a radially symmetric stress field. If
so, a logarithmic spiral is naturally expected.

Now we turn our attention to the oscillations that deco-
rate the logarithmic behavior, as displayed in Fig. 2. Such
oscillations indicate the departure from radial symmetry in
the underlying stress field. It can be explained on the basis
of boundary effects. Clearly the shape of a typical frag-
ment is generally polygonal, not circular, and so its free
boundaries modify the shape of the shrinking stress front,
more so the closer the front is to the boundaries. This leads
to periodic variations in F, and hence oscillation in k. For
rectangular fragments we expect to see two cycles of oscil-
lation per revolution of the spiral. This is indeed roughly
the case in our fits. Moreover, the observed diminishing
amplitude of oscillation at smaller r is also in agreement.

To confirm and test the robustness of our proposed
mechanism, we implement it in a mesoscopic spring-block
model [14] which describes the fracture of an overlayer on
a frictional substrate. In this model, the grains in the layer
are represented by blocks which form a triangular array of
linear size L with interconnecting bundles each of which
has H bonds (Hookean springs). The bond has a break-
ing strength Fc and a relaxed length l. While H plays the
role of thickness, the initial block spacing a prescribes the
residual strain s � �a 2 l��a. Each block has the same
slipping threshold Fs such that, whenever the magnitude of
the resultant force �F on a block exceeds Fs, the block slips
to an equilibrium position defined by �F � 0. The tempo-
rally increasing stress in the layer during desiccation can
be modeled by increasing the stiffness of the bonds. This
is, however, equivalent to the case of constant stiffness but
decreasing Fs and Fc, with fixed k � Fc�Fs. In this way,
the competition between stick and slip and bond breaking,
quantified by the set of parameters G � �s, k,H, L�, was
shown to give rise to realistic fragmentation and selection
of the emerged scale [14].

Here we focus instead on what happens after the frag-
mentation process has settled. The simulated system is
thus assumed to represent a fragment stable against the
primary fragmentation (ensured by choosing G properly),
but susceptible to secondary curved crackings induced by
an advancing stress front. Therefore, an inhomogeneous
stress field is imposed, with a profile constant everywhere
095502-3
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FIG. 5. A simulated spiral crack (lower inset) and a fit of its
trajectory. The simulation parameters are L � 300, s � 0.3,
k � 2, H � 4, Ds�s0 � 1.4, w � a, speed u � 0.005a�step,
and full penetration. The linear behavior indicates a logarithmic
spiral, with a slope 	0.184. Upper inset: schematic plot of the
stress profile imposed on the fragment.

at s0, except on an annular region of radius R, where there
is a hump of height Ds and width w (see upper inset of
Fig. 5). By decreasing R at a constant speed u, we model
the advancing front of the stress field caused by detach-
ment. In a rather narrow parameter region (mainly small u,
large k, Ds 
 s0, and w 	 a), the desired spiral cracks
are successfully reproduced (lower inset of Fig. 5). Con-
sistent with experiment, the simulated spirals also follow
a logarithmic form as illustrated in Fig. 5. The value of
k depends on the parameters of the model, in particular,
by imposing smaller penetration results in tighter binding
spirals and hence smaller k. This is consistent with the
screening effects of the existing crack on the stress field
that influences further propagation of the crack.

In conclusion, spiral crack, an astonishing member of
the family of fascinating patterns produced by fracture,
is realized in a surprisingly simple setup of desiccating
precipitates. Its formation is argued to be driven by an
unusual stress relaxation process governed by the foldup
of the fragments. A discrete spring-block model incor-
porating such driving appears to capture successfully the
095502-4
observed phenomena. The spirals have interesting prop-
erties, of which several quantitative aspects can be under-
stood theoretically.

The work of K.-t. Leung is supported by the National
Science Council of R.O.C. and the work of Z. Neda is
sponsored by the Bergen Computational Physics Labo-
ratory in the framework of the European Community —
Access to Research Infrastructure of the Improving Human
Potential Programme. We are grateful for the professional
advice and comments from Professor Derek Hull.

[1] B. Lawn, Fracture of Brittle Solids (Cambridge University
Press, Cambridge, 1993), 2nd ed.; D. Hull, Fractography
(Cambridge University Press, Cambridge, 1999).

[2] A. Yuse and M. Sano, Nature (London) 362, 329 (1993);
A. Groisman and E. Kaplan, Europhys. Lett. 25, 415
(1994); T. Bai, D. D. Pollard, and H. Gao, Nature (Lon-
don) 403, 753 (2000); K. A. Shorlin, J. R. de Bruyn,
M. Graham, and S. W. Morris, Phys. Rev. E 61, 6950
(2000).

[3] B. K. Chakrabati and L. G. Benguigui, Statistical Physics
of Fracture and Breakdown in Disordered Systems (Claren-
don Press, Oxford, 1997); A. T. Skjeltorp and P. Meakin,
Nature (London) 335, 424 (1988); K.-t. Leung and J. V.
Andersen, Europhys. Lett. 38, 589 (1997).

[4] J. K. Gillham, P. N. Reitz, and M. J. Doyle, Polym. Eng.
Sci. 8, 227 (1968).

[5] O. M. Bostman, J. Bone Jt. Surg. 68, 462 (1986).
[6] Pipeline Occurrence Report No. P96H0012; The Trans-

portation Safety Board of Canada, http://www.tsb.gc.ca/
ENG/reports/pipe/1996/p96h0012/ep96h0012.html.

[7] D. Hull, Fractography (Cambridge University Press, Cam-
bridge, 1999), Chap. 3, p. 70.

[8] K.-t. Leung, L. Józsa, M. Ravasz, and Z. Néda, Nature
(London) 410, 166 (2001).

[9] Z. C. Xia and J. W. Hutchinson, J. Mech. Phys. Solids 48,
1107 (2000).

[10] D’Arcy Thompson, On Growth and Form (Cambridge Uni-
versity Press, Cambridge, 1961).

[11] P. Frick et al., Mon. Not. R. Astron. Soc. 318, 925 (2000).
[12] A. E. Tucker, K. Akers, and J. H. Enderson, J. Exp. Biol.

203, 3733 (2000); 203, 3745 (2000); 203, 3755 (2000).
[13] B. Cotterell and J. R. Rice, Int. J. Fract. Mech. 16, 155

(1980).
[14] K.-t. Leung and Z. Néda, Phys. Rev. Lett. 85, 662 (2000).
095502-4


