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Solitary waves are experimentally studied in a monolayer hexagonal dust lattice which is formed from
monodisperse plastic microspheres and levitated in the sheath of an rf discharge. It is found that the
product of the soliton amplitude and the square of the soliton width is constant as the soliton propagates.
The analytical theory describing the experiment is based on the equations of motion written for a linear
chain. It takes into account damping, dispersion, and nonlinearity. The numerical simulation of a linear
chain produces double solitons like those observed in the experiment.
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A wave isolated in space is called a soliton if it retains
its shape as it propagates through the medium. It was
first observed by Robinson and Russel [1] and described
theoretically by Korteweg and de Vries [2]. The existence
of solitons in weakly coupled complex (dusty) plasmas was
predicted theoretically [3] and considered in a number of
publications (see [4] and references therein).

The existence of solitons in a one-dimensional dust lat-
tice was shown in Ref. [5]. Acoustic solitons are also well
known in crystalline solids [6] which can be modeled at a
kinetic level by dust lattices [7,8].

The experiments were performed in a capacitively cou-
pled rf discharge (Fig. 1) similar to that of Ref. [9]. The
discharge chamber had a lower disk electrode and an up-
per ring electrode. The upper electrode and the chamber
were grounded. A rf power of 10 W (measured as forward
minus reverse) was applied to the lower electrode. An ar-
gon gas flow at a rate of 0.5 sccm maintained the working
gas pressure of 1.8 Pa in the chamber. Monodisperse plas-
tic microspheres 8.9 6 0.1 mm in diameter were levitated
in the sheath above the lower electrode forming a mono-
layer hexagonal lattice. They were confined radially in a
bowl-shaped potential formed by a rim on the outer edge
of the electrode. The monolayer particle cloud was about
6 cm in diameter and levitated at a height of �9 mm above
the lower electrode. The particle separation in the lat-
tice was 650 mm at the excitation edge (Fig. 1), 550 mm
in the middle and 720 mm at the outer edge. The par-
ticles were illuminated by a horizontal thin (0.2–0.3 mm)
sheet of light from a doubled Nd:YAG diode pumped laser
(532 nm) and imaged by a top view digital video camera
at 102.56 frames�s.

A horizontal tungsten wire 0.1 mm in diameter was
placed 4 mm below the particle layer and roughly halfway
between the center and the edge of the electrode. A simi-
lar wire configuration was used previously, in a different
apparatus, in the experiments of Ref. [9]. The wire was
normally grounded so that it had little influence on the
0031-9007�02�88(9)�095004(4)$20.00
particles. A short negative pulse (230 V, 100 ms) applied
to the wire pushed the particles away, breaking the lattice
above the wire and creating a pulsed one-dimensional
compressional disturbance propagating horizontally per-
pendicular to the wire. The lattice also oscillated in the
vertical direction with a small amplitude (well within
the thickness of the laser sheet) which caused a periodic
change of brightness of the particles, but not a loss from
the field of view. The parameters of the excitation pulse
were selected such that the disturbance propagated to
the end of the lattice without being fully damped. It
did not melt the lattice. A time interval of about 1 min
allowed the lattice to come to an equilibrium between the
experimental runs.
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FIG. 1. Sketch of apparatus. (a) Oblique view. Spherical par-
ticles charge negatively and form a monolayer levitating in the
plasma sheath above the lower electrode. (b) Side view. The
grounded wire is placed below the particles. Short negative
pulses applied to the wire excite solitons.
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In order to analyze the experiments, we identified the
particle positions in two consecutive frames to calculate the
particle velocities. The areas of Voronoi cells were com-
puted to measure the local particle number density n�x, t�
(where x is the distance to the wire and t is time). The
measured n�x, t� was averaged in 50 narrow bins parallel
to the wire to reduce the influence of random fluctuations.

We visualized the perturbations by plotting a grey-scale
map (Fig. 2) of the compression factor n�x, t��n0�x�
[where n0�x� is the unperturbed number density]. The
lower dark feature corresponds to the studied soliton. Its
trajectory is fitted to a theoretical curve (see later) and
marked with a dashed curve. The upper dark feature
(marked with a dotted line) corresponds to the second
weak pulse when the broken dust cloud recollapses. It
was used to estimate the dust-lattice wave speed, CDL.
In the central region of the lattice this was found to be
23 mm�s (from the slope of the dotted line). The soliton
theory predicts that a very weak soliton has Mach number
M � C�CDL � 1, and therefore its propagation speed C
is almost equal to the dust-lattice wave speed CDL (note
that M always exceeds unity).

We estimated the soliton speed C from the fit to its tra-
jectory (dashed curve in Fig. 2). It decreased as the soliton
propagated across the system. CDL is also position depen-
dent since it is a function of the unperturbed number den-
sity. It was highest in the middle and slightly lower at the
edges. We used the well known theoretical dispersion rela-
tion for a 2D dust-lattice wave [10] to get the dependence
of CDL on n0�x� and therefore on x. The resulting Mach
number was highest at the excitation edge �M � 2.1�, de-
creased to 1.3 in the middle, and rose slightly (to 1.5) at
the outer edge.

The soliton theory is based on the equations of motion
for a linear chain:

FIG. 2. Compression factor n�n0 as a function of time and
distance to the wire. Darker regions correspond to higher com-
pression. The lower dashed curve is a fit to the trajectory of
the soliton. The upper dotted line was drawn above a weak sec-
ondary pulse with Mach number M � 1. Its slope is determined
by the dust lattice wave speed CDL � 23 mm�s in the middle

of the lattice.
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where rk is the particle coordinate, m is the particle mass,
nd � 2.4 s21 is the damping rate due to the neutral gas
friction (Epstein drag), and UY is the particle interaction
energy in the Yukawa approximation. We assumed that
the particle charge Q and the screening length lD are con-
stant. The external force Fext consists of two components,
the stationary confinement force and the nonstationary ex-
citation force. The excitation force acts only during the
short time when the pulse is applied to the wire.

We expanded Eqs. (1) using perturbation theory, assum-
ing that the displacement u�r, t� from the equilibrium po-
sition is small and keeping the first nonlinear terms. We
also made a transition to the continuum limit by assum-
ing that the particle separation is small (long wavelength
approximation). The resulting inhomogeneous wave equa-
tion, taking into account damping (the second term on the
left hand side) as well as nonlinearity and dispersion (the
second and the third term on the right hand side), is
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where ldisp is the dispersion length, and L is the dimen-
sionless nonlinearity coefficient. These kinetic coefficients
are functions of the lattice parameter k � a�lD , where a
is the particle separation. For the inhomogeneous lattice
k depends on x.

For an arbitrary k, the kinetic coefficients are
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where G�k� � 2 ln�ek 2 1�, the primes denote deriva-
tives with respect to k. For k ¿ 1 we have (nearest neigh-
bor approximation)
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In the opposite case of k ø 1,
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In the weakly inhomogeneous case, when the lattice pa-
rameters change on a scale much larger than the size of the
soliton, we can use a locally homogeneous equation with
the kinetic coefficients having parametric dependencies on
the coordinate:

ü 1 nd �u � C2
DL�u00 1 Lu0u00 1 l2

dispu0000� , (3)

where dots and primes denote partial time and space
derivatives, respectively. We do not study the influence of
the boundaries, i.e., consider the infinite medium.

The friction is weak and, for a compressional distur-
bance propagating with a speed C � 20 40 mm�s, the
damping length is C�nd � 9 15 mm which is much
larger than the width of the disturbance. Therefore we can
omit the friction term in the first approximation. Then,
Eq. (3) has soliton solutions for the particle velocity:
y � �u � CA cosh22�j�L�, where j � x 2 Ct is a
self-similar variable, C is the soliton velocity, A is the
dimensionless soliton amplitude, and L is the soliton
width. The particle displacement can be expressed as
u � AL�1 2 tanh�j�L�� and the compression factor as

n�n0 � �1 1 u0�21. (4)

The relations between the soliton parameters A, L, and M
are well known in this case:

M2 2 1 � 4l2
disp�L2 � 2LA�3 . (5)

As the soliton amplitude increases, the speed also in-
creases, and the width decreases since AL2 � const. The
continuum limit approximation is valid when L ¿ a. Ap-
plying Eq. (5) we obtain the condition for Mach number
M2 2 1 ø �4�k2� �l2

disp�l
2
D�. For our experiment k � 1

and this condition is equivalent to M 2 1 ø 1.
We used the compression factor n�n0 from Eq. (4) to fit

the experimental data (Fig. 3). It turned out that the best
fits were obtained using a sum of two soliton solutions
where the first soliton has a higher amplitude and propa-
gated faster than the second one. It corresponds to the dark
feature marked with a dashed curve in Fig. 2. The second
soliton is barely noticeable in Fig. 2 as a slightly darker
feature above the main soliton. It separates from the first
soliton at about 15 mm and lags 0.3 s behind at 30 mm.
The amplitude of both solitons decreases in time due to
damping.

Note that the compression factor in Fig. 3 decreases to
the left of the soliton (closer to the wire). Since, in our
case, the lattice has a finite size and is confined in a para-
bolic potential, it is shifted from its equilibrium position
as the soliton passes through. After the soliton has passed,
the particles return to their equilibrium positions reduc-
095004-3
-0.5

0

0.5

1

1.5

5 10 15 20 25 30 35 40 45

co
m

pr
es

si
on

 fa
ct

or

distance to wire (mm)

0.2 s
0.4 s
0.6 s
0.8 s
1.0 s

FIG. 3. Compression factor n�n0 versus distance to the wire
at different times. The solid lines show the theoretical fits to
the experimental data. Two solitons are present. The fits and
experimental points at later times are offset down (by 0.4, 0.7,
1.0, 1.3, respectively).

ing the compression factor behind, i.e., to the left of the
soliton.

In making the fits, we took into account this backflow
of the lattice. We assumed that the horizontal confining
potential is Uext � mV2

ox2�2, where Vo is the horizontal
oscillation frequency. In our case Vo�2p � 1.2 s21, L �
3 mm, and C � 30 mm�s. The soliton characteristic time
scale L�C ø 1�Vo. Thus we can neglect the influence of
the backflow on the soliton shape and separate the soliton
solution from the baseline.

The restoring force is Fext � 2mV2
odu, where du is

the displacement due to the soliton. Solving the equation
of motion leaving only the acceleration, the wave, and the
external force terms, we obtained the velocity gradient of
the restoring motion:

y0
rm � V2

oCdu��C2 2 C2
DL�, yrm � �u . (6)

Applying the continuity equation to Eq. (6) yields the re-
duction of the compression factor. This solution is valid
near the soliton at a distance smaller than the damping
length and is good as a first approximation.

The relations between the soliton amplitude and width
including inhomogeneity and damping were calculated by
applying the energy conservation to Eq. (2):
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where K, P, and W � K 1 P are kinetic, potential,
and total energy, respectively. Substituting the soli-
ton solution for u into Eq. (7) we obtain that W �
�2a�5� �4M2 1 1� �A2L� and K � aM2�A2L�, where
a � �2�3�mC2

DL��klD�. In case M 2 1 ø 1 (when
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FIG. 4. Amplitude A (a), width L (b), and soliton parameter
AL2 (c) as a function of time for the larger soliton. The soliton
parameter is approximately constant. The dots are the experi-
mental data. The lines correspond to the theory at different
screening lengths.

the continuum limit is applicable) W � 2K and the
total energy decays exponentially, W ~ exp�2ndt�. The
soliton amplitude and width are related to the total energy
by W � 2a�A2L�, and they also scale exponentially as

A ~ exp�22ndt�3�, L ~ exp�ndt�3� .

The soliton parameters A, L, and AL2 determined from
the experiment for the first (larger) soliton are plotted in
Fig. 4. Note that the parameter AL2 � const in the weakly
damped inhomogeneous case. Lines in Fig. 4 show the full
solutions of Eqs. (7) for two different values of lD. Our
case corresponds to the screening length of �1.2 mm.

The analytical model presented here does not describe
the formation of multiple solitons by a single pulse. How-
ever, two solitons were observed in a molecular dynam-
ics simulation of a linear inhomogeneous chain which
we performed. The confining potential for 100 particles
was chosen to get a distribution of the number density
similar to the experiment. Varying the excitation pulse
we achieved a qualitative agreement with the experiment
(Figs. 5 and 3). The simulation parameters are Q � 1.6 3
104e, Vo � 1.2 s, nd � 2.4 s21, lD � 1 mm, and exci-
tation time 0.1 s. The simulation produced different num-
bers of solitons depending on the excitation; e.g., we were
able to obtain more than two solitons by increasing the ex-
citation length. This was also observed in the experiment
when the amplitude of the excitation pulse was increased.

Here we have presented an experimental study of dissi-
pative longitudinal solitons in a monolayer hexagonal dust
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FIG. 5. Compression factor versus particle number for a simu-
lated linear chain model. It describes the formation of two
(or more) solitons by a single excitation pulse and qualitatively
agrees with the experiment. The curves at later times are offset
down (by 0.45, 0.75, 1.0, and 1.3, respectively).

lattice. A simple linear chain theory taking into account
damping and inhomogeneity was suggested to describe the
experiment. A linear chain simulation reproduced the for-
mation of multiple solitons by a single excitation pulse.
The theory and the simulation agree qualitatively with the
experiment. A full two-dimensional soliton model is a sub-
ject of our future work.
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