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We develop a classical model of the parametric effect of electromagnetically induced transparency
(EIT) within the line of resonance absorption of an electromagnetic wave in the medium—an effect
initially discovered for a quantum three-level system. On the basis of this model, the EIT effect for
electromagnetic waves at frequencies of the electron-cyclotron resonance in a cold plasma is considered.
Similar to the analogous quantum scheme, the EIT window in the classical model is characterized by
group deceleration of the reference electron-cyclotron wave.
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(I) An interesting parametric effect in contemporary
coherent and nonlinear optics is electromagnetically
induced transparency (EIT) in ensembles of three-level
atoms caused by interference of the quantum states of
electrons. This effect manifests itself as formation of
a “transparency window” within the zone of resonance
absorption, which is accompanied, at the same time, by
extremely slow group velocity of the reference light wave
(e.g., see review [1]). Specifically, the EIT effect underlies
the recent experiments on the “storage of light” described
in [2,3]. In terms of the general theory of coherent radia-
tion processes the search for a classical equivalent of EIT
is evidently rather natural; this search is also stimulated
by the hope to transfer the new ideas from quantum
optics and electronics into classical microwave electronics
and plasma physics. ���It has been noted earlier (in [4,5])
that there is some similarity between electromagnetically
induced transparency in quantum systems and one of the
regimes of the parametric wave interaction in isotropic
plasmas. However, in the “standard” (quantum) variant
EIT is associated with the appearance of the transparency
window within the zone of resonance absorption [1]. That
is why it seems important to discuss also direct classical
equivalents of the corresponding quantum effect.���

In this paper the simplest classical model of EIT is built
up: a system with lumped parameters (Section II); it is
shown that under EIT conditions such a classical equiva-
lent for the effect of interference of quantum states in the
three-level system is a variant of the effect of a dynamic
damper in a system of two coupled electric LC circuits
known in the theory of oscillations. Using this model the
theory of EIT for electron-cyclotron waves in cold colli-
sional plasma is developed in Section III. The obtained
results are discussed in Section IV.

(II) Let us consider the quantum three-level system
(Fig. 1) with transition eigenfrequencies v31, v32, and
v21. Let this system interact with the bichromatic field:

�E�t� � �x0 Re�E1e2iv1t 1 E2e2iv2t� . (1)

The frequencies of the reference wave and the pumping
wave (v1 and v2) are close to the transition frequencies
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v31 and v32, respectively; hence, the “beat” frequency
vL � v1 2 v2 is close to transition frequency v21. The
susceptibility x of the medium formed by such three-level
atoms, linear in terms of the field E1 and quadratic in terms
of the pumping field E2, is equal to (see [1,6,7])

x � �v0�4p�

3
v21 2 vL 2 igL

�v31 2 v1 2 ig1� �v21 2 vL 2 igL� 2 V
2
R

.

(2)

Here g1,L are the phenomenological constants of “trans-
verse” relaxation of the transitions with frequencies
v31,21, respectively; VR � j�d21E2�j �2h̄�21 is the Rabi
frequency determined by the pumping amplitude, v0 �
4pjd31j

2N�h̄, where N is atom density (population of
the j3� and j2� levels is assumed negligibly small), and
dij is the matrix element of the projection of the dipole
momentum operator on the direction of the electric field.

It is evident that at V
2
R ¿ �g1gL� excitation of reso-

nance oscillations of the quantum system in the vicinity of
the transition frequency v31 is suppressed in the frequency
band of the order of the Rabi frequency. ���The detailed dis-
cussion of the frequency dependence of the polarization of
the medium in the EIT regime can be found in review [1]
and its references.���
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FIG. 1. The quantum three-level system.
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Let us pass over to the classical equivalent of the quan-
tum system considered above. Note that, generally speak-
ing, the equations that describe the density matrix of the
system correspond to the system, which describes excita-
tion of the ensemble of classical coupled oscillators. For
the case, when such coupling is caused by Stark effect in
dc field the classical analog in the form of two LC circuits,
coupled by the constant mutual inductance was proposed
in [8]. In the case of HF drive considered now the coupling
of quantum transitions is parametric, so that adequate clas-
sical model (see Fig. 2) represents two LC circuits (with
eigenfrequencies v31 and v21 and relaxation constants g1

and gL), which are coupled via mutual variable induc-
tance M � Re���m2 exp�2iv2t����. In this case the harmonic
coupling between the circuits acts as pumping E2 in the
quantum system. It is not difficult to verify that if the reso-
nant conditions jv1,L 2 v31,21j ø v31,21 are fulfilled the
frequency dependence of the impedance for the circuit de-
picted in Fig. 2 is completely equivalent to the formula (2)
for susceptibility of the quantum system in the EIT regime
up to the following substitution:

V2
R °! v1vLjm2j

2��16L1LL� . (3)

When the conditions of the resonant excitation of the os-
cillator with frequency v21 are fulfilled, oscillations of the
first oscillator can be suppressed. Note that the very effect
of resonance buildup of an oscillator being suppressed due
to coupling with another oscillatory system is well known:
it is so-called dynamic damper. However, in its standard
version this effect is provided by constant coupling of two
oscillators, which causes excitation of the damper at the
frequency of the external force (see, e.g., [8,9]). In the
095003-2
FIG. 2. The equivalent oscillatory system with lumped
parameters.

case under consideration the “parametric” coupling of
the oscillators results in buildup of the damper at the beat
frequency: this is the main peculiarity of the discussed
effect.

(III) As an example of the EIT effect realized in a clas-
sical wave system we will consider the electron-cyclotron
resonance in cold magnetized plasma. Let two circularly
polarized extraordinary �X� waves propagate along a con-
stant magnetic field �H � �z0H:

�E��z, t� � Re��e1�E1e2iv1t1ik1z 1 E2e2iv2t1ik2z�� , (4)

where �e1 � ��x0 1 i �y0��
p

2 is the polarization vector of X
waves and �z0, �x0, and �y0 are unit vectors of the Cartesian
axes. Let us focus on the case where frequency v1 is close
to electron gyrofrequency vH � eH�mc and the beat fre-
quency vL � v1 2 v2 is close to the plasma frequency
vp: jv1 2 v2j � vp (sign of difference v1 2 v2 is not
significant). Oscillations of the transverse and longitudi-
nal (relative to the constant magnetic field) velocity com-
ponents of the electron component are determined by the
Euler equations, in which we will take into account also
the hf magnetic field term in a Lorentz force:
≠ �y�

≠t
1 vH � �y� 3 �z0� 1 n �y� 1 yk
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≠z
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√
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!
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here n ø vH is the transport frequency of collisions, and w is the electrostatic potential. Taking into account the
continuity equation and the Poisson equation, and operating within the assumption that the ion density is constant and
the plasma is quasineutral, one can obtain equations that describe excitation of longitudinal collective oscillations by the
beat ponderomotive force:

≠2n
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µ
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∂
(7)
(here v2
p � 4pe2N�m is the electron plasma frequency,

N is the unperturbed plasma density, and n is the pertur-
bation of electron density).

Having introduced the complex amplitudes of the corre-
sponding values

�y� � Re

√
�e�1�

X
j�1,2

ŷje
ikjz2ivj t

!
,

n � Re�n̂ei�k12k2�z2ivLt� ,
(8)
we can pass over to the expression for the amplitude of the
electric current, and then to one for the effective suscep-
tibility of the wave (see, e.g., [10]) that propagates along
the magnetic field at frequency v1:

ĵ1 � 2e

µ
N ŷ1 1

1
2

n̂ŷ2

∂
, x � 2

ĵ1

iv1E1
. (9)

Let us determine the values of ŷ1 and ĵ1 with the account
for the terms, which are quadratic in terms of field E2
095003-2



VOLUME 88, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 4 MARCH 2002
and neglect small values of the order of �njEC�vH� and
�jv1 2 vH jjEC�vH�. Then we will obtain the following
expression for the susceptibility:

x � 2
y

4p

3
�D2 2 y 1 iDs� 1 2jECD

p
u �2k1v1

k2v2
2

3
2 1 D�

�1 1 is 2
p

u � �D2 2 y 1 iDs� 2 2D2
p

u jEC
.

(10)

In (10) jEC � �eE2�2mjv2 2 vH 1 inj�2�k2�v2�2 �
jy2j

2��2yph�2 is the ratio of squares of the oscillatory and
phase velocities for the pumping field, y � �vp�v1�2,
u � �vH�v1�2, s � �n�v1�, D � �vL�v1�. It is evident
that when the pumping is sufficiently powerful, i.e.,
jEC ¿ s2�D, the standard linear absorption becomes sig-
nificantly weaker in the frequency band that corresponds
to the condition of j�1 2 u1�2� �D2 2 y�j # �D2jEC�
(see [10]). ���Moreover, if the approximate relation
�D2 2 y 1 iDs� � 2D�D 1 i�s�2� 2

p
y � is used,

in the domain of parameters s ¿ jEC ¿ s2�D from
(10) the expression follows which corresponds exactly
to the frequency dependence of the complex suscepti-
bility for the “quantum” medium in the EIT regime.���
However, in order to achieve absolute smallness of ab-
sorption at the wavelength, it is necessary that inequality
s ø �jEC�y1�2� (which is, generally speaking, stronger)
should be fulfilled. The group velocity ygr � Re� ≠v1

≠k1
� in

the EIT “window” will be estimated as

ygr � c�jEC�y1�2� . (11)
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(IV) The expression for the “effective” susceptibility
of the reference EC wave [Eq. (10) obtained above] al-
lows one to study the features of wave propagation in the
EIT window. For example, if the plasma density is about
1013 cm23 and the electron temperature, which determines
the transport frequency of Coulomb collisions, is the or-
der of 300 eV, the absorption length for a reference EC
wave of frequency �v1�2p� � 100 GHz is about 1 m for
an energy flux 250 �kW�cm2� of the “pumping” radiation.
���All parameters used here are typical for modern gyrotrons
(see [11]). The parameters of the considered plasma de-
vice (plasma density 	1013 cm23, magnetic field 	3.5 T,
the length 	1 m, cross section 	100 cm2) also corre-
spond to some real plasma experiments [12].��� In this case,
the length of linear cyclotron absorption is of the order
of the wavelength. Figure 3 exemplifies formation of the
transparency window within the region of linear cyclotron
absorption (Fig. 3b corresponds to the above-mentioned
parameters of plasma and radiation). It is seen that in the
region of the “EIT window” the direction of the group
velocity coincides with the direction of the wave vec-
tor, its magnitude rather well corresponds to the estima-
tion (11): ygr � 1023c in Fig. 3a and ygr � 1024c in
Fig. 3b.

In this paper we have demonstrated a simple classical
analog of quantum EIT effect. This analog makes it pos-
sible to design various wave systems with parametrically
induced transparency; we considered the typical example
of such a classical system—electron cyclotron waves in
magnetized plasma.
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FIG. 3. Formation of the transparency window. Energy flux of driving field is 250 kW�cm2, v1�2p � 100 GHz. (a) y � 1022,
v2�vH � 0.9, s � 5 3 1024, jEC � 0 (dashed line), jEC � 2.5 3 1024 (solid line). (b) y � 0.078, v2�vH � 0.72, s � 3.5 3
1027, jEC � 0 (dashed line), jEC � 2 3 1025 (solid line).
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The possibility to transport EC waves through the re-
gion of cyclotron absorption seems to be rather interest-
ing for applications at magnetic fusion devices for EC
plasma heating and diagnostic. Generation of EIT win-
dows gives a tool to control the region of electromagnetic
wave absorption (or radiation) in the case of extended
zone of EC resonance in a homogeneous magnetic field.
Another possible research line for studying the EIT ef-
fect in classical systems is associated with the progress
in the theory of “inversion-free” lasing. In quantum sys-
tems the EIT regime is, essentially, the excitation thresh-
old for one of the inversion-free lasing schemes (for the
so-called P scheme, see, e.g., [13] and [14]). Hence, cre-
ation of the classical EIT version makes it possible to hope
for development of the classical variant of the quantum P
scheme.

However, specific proposals will require generalization
of the theory developed here to the case of collisionless
resonance interaction of waves and particles.
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