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Self-organization of an ordered structure occurs in a plasma under rather restrictive conditions. A new
framework for a variational principle invokes a coercive form that results in a criterion for self-organizing
relaxation of a two-fluid plasma. The constraints (constants of motion of the ideal model) are adjusted,
through a weakly dissipative process, so that the relaxed state, under well-defined conditions, is a stable
equilibrium independent of the direct effects of dissipation.
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We critically examine the phenomenon of self-
organization of plasmas into “relaxed states” of varying
complexity. Since many of the relaxed states in recent
literature follow from seemingly standard variational
principles, one could draw the erroneous conclusion that
self-organization is a general tendency of plasmas. We
presently show that it is not so; self-organization, in fact,
may occur only under rather restrictive conditions —not
all variational principles are well posed, and even when
they are, not all solutions to variational principles lead
to stable equilibria (even to equilibria)— an essential
minimum qualification for relaxed states.

Stability of a state may be proved if the kinetic part of
an appropriate total energy can be shown to be bounded.
If the “energy” (a constant of motion) can be split into
well-defined kinetic and “potential” parts, the state with
the minimum potential energy is guaranteed to be stable.
In this sense, the variational principle (VP1) and the re-
laxed states (= 3 B � lB� derived by Taylor [1] by mini-
mizing the magnetic energy Em �

R
jBj2 dx keeping the

magnetic helicity H1 �
R

A ? B dx constant readily
pass the stability muster; for sufficiently small jlj, any
departure from the Taylor state must increase the magnetic
energy, resulting in a decrease of the remaining kinetic
part because the sum of the kinetic and magnetic energies
is a constant in the framework of the incompressible single
fluid magnetohydrodynamics (MHD). The standard “en-
ergy principle” for a static MHD equilibrium (steady state
without flow) invokes a more complicated general expres-
sion of the potential energy. For an equilibrium with a
stationary flow, however, the generator of the linearized
system is non-Hermitian and the energy of the pertur-
bations is no longer well defined. Hence, the situation
is less satisfactory for the variational principle (VP2)
[2] used to derive the more general relaxed states per-
tinent to a two-fluid plasma in which the combination
of the velocity and the magnetic field control the full
dynamics.

Before discussing the variational principle VP2, we
summarize some basic properties of the magnetofluid
system expressible in the succinct vortex dynamical form:
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≠

≠t
vj 2 = 3 �Uj 3 vj� � 0 � j � 1, 2� (1)

in terms of a pair of generalized vorticities and the corre-
sponding flowsΩ

v1 � B ,
U1 � V 2 = 3 B ,

Ω
v2 � B 1 = 3 V ,
U2 � V .

The notation is standard with the velocity, the magnetic
field, and the length, respectively, normalized to the Alfvén
speed, to a characteristic magnetic field, and the ion colli-
sionless skin depth. The three integral invariants

E �
Z

V
�jV j2 1 jBj2� dx , (2)

H1 �
Z

V
A ? B dx , (3)

H2 �
Z

V
�A 1 V� ? �B 1 = 3 V � dx (4)

represent the energy (the incompressibility condition elimi-
nates the thermal energy), the magnetic helicity, and the
helicity of the generalized vorticity. We assume periodic
boundary conditions for simplicity.

The “Beltrami conditions”

vj � ajUj � j � 1, 2� , (5)

implying the alignment of vortices with the corresponding
flows [3,4], yield the simplest stationary solution to (1).
For constant a1 and a2, (5) translate to [3]

�= 3 2l1� �= 3 2l2�u � 0 , (6)

where l6 � ��a2 2 a21
1 � 6

q
�a2 1 a21

1 �2 2 4��2 and
u � B or V . The general solution to (6) is the linear
combination of two Beltrami fields [5,6] G6 obeying

= 3 G6 � l6G6 . (7)

If the system contains harmonic magnetic and flow velocity
fields, the eigenvalues l6 may be arbitrary real or complex
conjugate numbers [5]. For arbitrary constants C6, the
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magnetic field and the corresponding velocity field may be
written as

B � C1G1 1 C2G2 ,

V � �a21
1 1 l1�C1G1 1 �a21

1 1 l2�C2G2 .

It appears that the double-Beltrami equilibrium may be
“derived” by minimizing the total energy E keeping H1 and
H2 constant (VP2). Two questions arise: (i) What could
be the possible significance of a minimum energy state?
(ii) Since E, H1, and H2 are on an equal a priori foot-
ing, all being the exact constants of ideal dynamics, what
dictates the choice of using E as the target functional (TF)
for minimization? Remember that the target functional Em

for VP1 is not a constant of motion.
If one could define an appropriate “free energy” in a

statistical mechanical framework, a minimum energy state
(as distinct from a minimum potential energy state) could
acquire an important connotation in relaxation theory. Sev-
eral authors [7] have constructed such a statistical mechan-
ics in a Hilbert space of single-fluid MHD. The success
of the procedure is contingent upon finding a suitable free
energy function which is bounded from below. When the
theory is applied to the current system, we find that the
free energy is not bounded in the energy norm because
of the ion-flow helicity term (a part of the invariant H2).
Thus the minimum free energy route is not available for
relaxed states to emerge in a magnetofluid. This charac-
teristic of the ion-flow helicity will render VP2 to be a
mathematically ill-posed problem; a demonstration will be
given soon.

To understand the essence of the second question we
remind the reader that we are dealing with a near ideal
but not a perfect ideal system. The dissipation, however
small, is the primary agent for leading the system towards
relaxation. Simulations of the single fluid system reveal
that during the relaxation process (as the system evolves
from an initial state to a relaxed state) the magnetic energy
Em goes through a severe adjustment (decrease) while H1,
the collisionless constant of motion, changes only mildly
[8]. This is totally consistent with the demands of the
variational principle; the system is driven to equilibrium
by changes (even drastic) in the value of TF. Different
responses to dissipation have given rise to the notion of
“selective dissipation” which may be used to order the
“fragility” of the invariants [9]. The most fragile (suffering
the most from dissipation) invariant could, then, be used as
TF, because it is “least invariant” among invariants. This
criterion, however, would pick H2 as TF because of the
higher derivatives in the ion-flow helicity contribution. A
variational principle like VP2 with E as TF (and H1, H2 as
constraints) will be physically unsound and will turn out
to be mathematically ill posed.

One cannot get out of this difficulty by simply switching
the roles of E and H2; the latter, though more fragile than
the former, is unsuitable as TF because it is not bounded
below. In the two fluid dynamics, therefore, the invocation
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of selective dissipation, by itself, does not lead to a well-
posed variational problem; some additional input is sorely
needed.

Finding a suitable TF is that required input. It follows
from the preceding discussion that the TF cannot be one
of the three invariants and it must include higher-order
derivatives than any of them. The latter implies that it
must be a functional of the coercive form; the meaning of
“coercive” will become clear as we proceed.

If the constrained minimization of a functional is to lead
us to a relaxed state independent of dissipation (though
dissipation is essential for its realization), this functional
has to be a measure of dissipation in the controlling dy-
namics (an almost ideal system is very different from a
dissipation dominated system such as a diffusion equation
for which the dissipation determines the structure of the
relaxed states). Further the TF should also be a mea-
sure of turbulence because the relaxed state should be
as free of turbulence as possible. For the magnetofluid,
these demands almost uniquely lead us to choose the gen-
eralized enstrophy (defined as the curl of the canonical
momentum)

F �
Z

V
j= 3 �V 1 A�j2 dx (8)

as the desired TF. Note that F is a hybrid functional
combining the magnetic and fluid aspects of the plasma
and can be equivalently thought of as the energy associated
with the generalized magnetic field seen by the ions. This
choice may be seen either as an extrapolation to three-
dimensional fluids of the two-dimensional fluid dynamics
where the fluid enstrophy serves as the TF or equivalently
as the magnetofluid reincarnation of the one-fluid Taylor
model.

A well-posed variational principle results when we mini-
mize F keeping E, H1, and H2 constant. The general
solution for arbitrary values of the three invariants is not
necessarily an equilibrium solution. We find that stable
equilibrium solutions result when the three invariants obey
a certain relationship, i.e., on well-defined surfaces in the
space spanned by the invariants. The parameter space
for the existence of stable solutions is still very large.
Physically it implies that starting from arbitrary values,
one of the invariants must adjust (in this case H2, the most
fragile one) as F is minimized so that it can find the value
dictated by the original values of E and H1. If H2, for
instance, is initially far away from its desired final value,
the system may not find its way into a relaxed state. These
ideas become clearer in later parts of our Letter.

Before developing the new variational principle we con-
struct a simple nontrivial model to bring into focus various
concepts that we have introduced.

Let us consider two functionals

G�u� �
Z

V
j=u�x�j2 dx, H �u� �

Z
V

ju�x�j2 dx
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with u � 0 on ≠V where V is a bounded domain in RN .
First, we seek a minimizer of G�u� with the constraint
H �u� � 1. This is a well-posed problem; the minimizer
is found from the variational principle,

d�G�u� 2 lH �u�� � 0 , (9)

where l is a Lagrange multiplier. The Euler-Lagrange
equation 2Du � lu with the above-mentioned boundary
condition constitutes an eigenvalue problem. We can easily
show that the eigenvalue l . 0. Let lj be an eigenvalue
and wj be the corresponding normalized eigenfunction
�kwjk

2 �
R

V jwjj
2 dx � 1�. With setting u � awj , and

demanding H �u� � 1, we obtain a � 1 and G�u� � lj .
The smallest lj, then, yields the minimum G�u�.

The complementary problem of finding a minimizer
of H �u� with the restriction G�u� � 1 turns out to be
ill posed. The inherent pathology of the problem is ex-
posed when we set up the variational principle d�H �u� 2
mG �u�� � 0 (m is a Lagrange multiplier) and analyze the
Euler-Lagrange equation 2Du � m21u. Let m21 � lj

(an eigenvalue of 2D), and u � awj . The condition

G�u� � 1 yields a � l
21�2
j , and H �u� � 1�lj. Hence,

the minimum of H �u� is achieved by the largest eigen-
value that is unbounded, viz., infH �u� � 0 and the min-
imizer limlj!`l

21�2
j wj � 0 is nothing but the minimizer

of H �u� without any restriction. The constraint G�u� � 1
plays no role in this minimization problem [10].

These examples demonstrate that unless the constraints
are less fragile (fragility being determined by the number
of derivatives) than TF [10], the constrained minimization
is meaningless at best. The variational principle simply
does not “see” the constraint because an infinitesimal per-
turbation with a small length scale can contribute any re-
quired value to the constraint.

If the second problem is to be properly posed, i.e., for
it to lead to a nontrivial manifestation of constrained mini-
mization, the mathematical requirement is the existence of
a higher order (coercive) TF. Generalizing our toy model
let us affect the minimization of the higher-order functional

F �u� �
Z

V
jDuj2 dx (10)

with restrictions G�u� � g and H �u� � h and with the
additional boundary condition 2Du � 0 on ≠V. Now the
well-posed variational principle

d�F �u� 2 m1G�u� 2 m2H �u�� � 0 (11)

yields the Euler-Lagrange equation

�2D 2 l1� �2D 2 l2�u � 0

with l6 � �m1 6

q
m

2
1 1 4m2��2. The general solution

is u � C1w1 1 C2w2, where w6 are the eigenfunction
of 2D belonging to the eigenvalue l6. The set of double
eigenfunction solutions extends the single eigenfunction
solution of the previous problems. However, by adjust-
ing either g or h, the general solution can collapse to a
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single eigenfunction solution. If g � l
2
1h (l1 is the small-

est eigenvalue), we obtain C2
1 � h and C2 � 0, and the

double eigenfunction solution degenerates into u � hw1.
This solution gives the minimum of F �u� under the given
constraints.

The addition of a coercive TF, and the subsequent
procedure of adjustment, has accomplished two desirable
objectives: (i) the pathology of the earlier ill-posed prob-
lem is removed and (ii) the direct influence of the added
coercive term on the equation of motion is also removed.
The desirability of the latter cannot be overemphasized:
without this the theory would have become arbitrary and
quite undependable. Notice that the matching condition
G�u� 2 mH �u� � 0, converting the solution to a single
eigenfunction of 2D, renders the larger problem entirely
equivalent to the original problem d�G�u� 2 mH �u�� �
0 [because both G�u� and H �u� are homogeneous
quadratic forms] but with perfect mathematical rigor.

We now transplant this procedure to the derivation of
possible relaxed states in a two-fluid plasma. The sug-
gested coercive term F [see (8)] is motivated entirely by
physics; it is a natural magnetofluid hybrid that is a simul-
taneous measure of the levels of turbulence and dissipation.
It stands to reason that any macroscopic self-organized
relaxed state of a near ideal system must minimize this
measure of disorder and decay. The constraint function-
als will, obviously, be the dynamical invariants in the ideal
limit. We shall, then, seek a minimizer of F making sure
(by the appropriate adjustment of constraints) that F does
not directly influence the minimizer. If the minimizer turns
out to be a stable equilibrium of the ideal system, then we
would have found a self-organized state. If such an adjust-
ment cannot be found, our quest for a relaxed state will
be aborted; the solutions will be nonequilibrium or unsta-
ble and will minimize neither dissipation nor turbulence.
Physically, the adjustment can occur through the small dis-
sipation inherent in the dynamics. The most fragile con-
straint (including the highest-order derivatives) is likely to
suffer this adjustment.

The minimization of F keeping E, H1, and H2 constant
is carried out through the variation

d�F 2 m0E 2 m1H1 2 m2H2� � 0 ,

where m0, m1, and m2 are Lagrange multipliers (con-
stants). This variational principle is well posed because of
the coercive term F that forces the functional F 2 m0E 2

m1H1 2 m2H2 to be convex having a unique minimizer.
Calculating independent variations in A and V , and after
some manipulation, we obtain

= 3 = 3 V 2 m0V 2 m2= 3 V � 2= 3 B 1 m2B ,

(12)

m0V � m0= 3 B 1 m1B . (13)

The general solution will be a “triple Beltrami field”— a
linear combination of three Beltrami functions [see (7)]:
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B �
3X

j�1

CjGj , V �
3X

j�1

DjGj , (14)

where (13) demands Dj � �lj 2 �m1�m0��Cj � djCj.
Since the general triple Beltrami field (14) may not even

be an equilibrium state, we must strive to find a subclass
which spans the double Beltrami states —known to be
stable equilibria for eigenvalues (l1 and l2) sufficiently
small that the resulting magnetic and flow shear do not
drive kink and Kelvin-Helmholtz instabilities. We know
from the toy model that this may be achieved by the ad-
justment of the constraints; the generalized helicity H2,
containing the higher-order derivatives, will be affected the
most.

Because the relation between V and B includes lj � j �
1, 2, 3� and m� �� � 0, 1, 2�, the algebra for carrying out
the adjustment process is rather complicated [6]. Let us
consider a simpler case when the system has no harmonic
(external) field. Then, the eigenfunctions Gj are orthogo-
nal [5], and we obtain0

B@ E
H1

H2

1
CA �

0
B@ 1 1 d2

1 1 1 d2
2 1 1 d2

3
l

21
1 l

21
2 l

21
3

X1 X2 X3

1
CA

0
B@ C2

1

C2
2

C2
3

1
CA ,

(15)

where Xj � �1 1 ljdj�2�lj. Solving (15) for C1 and
C2 with C3 � 0, we obtain a relation among E, H1, and
H2. Denoting the matrix on the right-hand side of (15) by
M and writing L � M21, m

0
1 � 2L3,2�L3,1, and m

0
2 �

2L3,3�L3,1, the equation for C2
3 � 0 reads as

E 2 m0
1H1 2 m0

2H2 � 0 ,

which determines the adjusted value of H2 for a pre-
scribed E and H1. This “adjustment” is formally
equivalent to solving d�E 2 m

0
1H1 2 m

0
2H2� � 0 (all

functionals are symmetric bilinear forms), giving the
double Beltrami equation (6). We have finally obtained
the self-organized relaxed states through a mathematically
well-posed variational principle.

We must emphasize that the adjustment condition of the
last paragraph is not a variational principle to minimize
either E (ill posed, because H2 is “fragile”) or H1 or H2

(not lower bounded).
We have derived a well-posed variational principle

that reproduces the double Beltrami states characterizing
the relaxed states of a two-fluid plasma. The coercive
target functional �F� is the measure of turbulence (and
simultaneously, of the dissipation), and its minimiza-
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tion is exactly the characterization of self-organization.
This is not to be confused as selective dissipation of
F; selective dissipation occurs in the fragile quantity
(primarily H2) through the adjusting process. The system
can self-organize to a quiescent state, minimizing F,
if the constants of motion are appropriately adjusted
through a weakly dissipative process. This logical
characterization of self-organization is naturally built in
our formulation of the variational principle. We have
shown that the required adjustment is not the mini-
mization of energy. The conventional model of finding
an energy minimizer constitutes an ill-posed problem.
This mathematical observation has profound conse-
quences suggesting that the energy is not the principal
variable whose minimization characterizes self-
organization in vortex dynamics. Our general formalism,
in the limit of no flow, provides a new interpretation for
Taylor relaxation.
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