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Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier
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We address the problem of heat conduction in 1D nonlinear chains; we show that, acting on the
parameter which controls the strength of the on-site potential inside a segment of the chain, we induce
a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same
transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain
by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose
new devices such as a thermal rectifier.
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In recent years renewed attention has been directed to-
ward the energy transport in dynamical systems, a problem
which has been denoted by Peierls as one of the outstand-
ing unsolved problems of modern physics [1]. These ef-
forts mainly focused on the possibility to derive the Fourier
law of heat conduction on purely dynamical grounds with-
out recourse to any statistical assumption [2–11]. In spite
of relevant progress, several problems remain open and we
are still far from a complete understanding [5–11].

In this Letter we investigate a different and important
problem, namely, the possibility to control the energy
transport inside a nonlinear 1D chain connecting two ther-
mostats at different temperatures. We show that we can
parametrically control the heat flux through the system by
acting on a small central part of the chain. Even more
interestingly, we show that it is possible to adjust the heat
flux by varying the temperatures of both thermostats, keep-
ing constant the temperature difference. Thus we provide
a simple mechanism to change the properties of the sys-
tem, from a normal conductor obeying Fourier law, down
to an almost perfect insulator. Controlling heat conduction
by nonlinearity opens new possibilities, such as the design
of a lattice that carries heat preferentially in one direction,
i.e., a thermal rectifier.

We consider the Hamiltonian

H �
X

n�1,N

p2
n

2m
1 Vn� yn� 1

1
2

K� yn 2 yn21�2, (1)

which describes a chain of N particles with harmonic
coupling of constant K and a Morse on-site potential
Vn� yn� � Dn�e2anyn 2 1�2. This model was introduced
for DNA chains where m is the reduced mass of a base
pair, yn denotes the stretching from equilibrium position
of the hydrogen bonds connecting the two bases of the
nth pair, and pn is its momentum [12–14]. In the context
of the present study, model (1) can simply be viewed as
a generic system of anharmonic coupled oscillators, the
094302-1 0031-9007�02�88(9)�094302(4)$20.00
on-site potential arising from interactions with other parts
of the system, not included in the model. The Morse
potential is simply an example of a highly anharmonic soft
potential, which has a frequency that decreases drastically
when the amplitude of the motion increases.

In this Letter we consider the out-of-equilibrium prop-
erties of model (1) by numerically simulating the dynam-
ics of the N particle chain, coupled, at the two ends, with
thermal baths at different temperatures T1 and T2. We ther-
malize at T1 and T2 the first and the last L particles by us-
ing Nosé-Hoover thermostat chains [15,16], or a Langevin
description when we investigate cases very far from equi-
librium. We then integrate the differential equations of
motion for both the thermostats and the chain with a fourth
order Runge-Kutta method as described in [17]. The bath
temperatures T1, T2 are never large enough to drive the
system beyond the thermal denaturation temperature Tc

above which the mean value of yn diverges [14].
We compute the temperature profile inside the system,

i.e., the local temperature at site n defined as Tn � m� �y2
n�,

where � � stands for temporal average, and the local heat
flux Jn � K� �yn� yn 2 yn21�� [18]. The simulations are
performed long enough to allow the system to reach a
nonequilibrium steady state with local thermal equilibrium
where the local heat flux is constant along the chain.

As a preliminary step we have considered the homo-
geneous case in which Dn � D, an � a, n � 1, . . . ,N .
Here, as expected, we have detected a temperature gradi-
ent inside the chain, as shown in Fig. 1 (circles), and we
have verified that the system obeys the Fourier law of heat
conduction. For fixed temperatures T1 and T2, and a chain
length varying from N � 64 to N � 1024, the heat flux
evolves as 1�N as expected for a system with a well de-
fined, finite, thermal conductivity.

We now divide the chain between the thermostats in
three regions in which Dn takes different values. In the left
and right regions, n � 1, . . . , �N 2 M��2 and n � �N 1

M��2 1 1, . . . , N , respectively, we set Dn � D, while in
the M sites of the central region Dn � D1; an � a for
© 2002 The American Physical Society 094302-1
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FIG. 1. Temperature profile of the chain with parameters D �
0.5, N � 128, a � 1, K � 0.3, M � 8, and T1 � 0.16, T2 �
0.15. The Morse potential constants are D1 � D � 0.5, homo-
geneous system (circles), D1 � 1.2 (diamonds), and D1 � 0.8
(plusses).

the whole chain. Typically, in our simulations, we take
D � 0.5, a � 1, K � 0.3, m � 1, N � 128, L � 16,
and M � 8, while D1 has been varied from 0.5 to 1.2.
As shown by the numerically computed temperature pro-
files of Fig. 1, the results are now strikingly different. The
temperature profile changes as D1 2 D is increased until,
for large enough D1, the central region behaves as an in-
sulator, the left and right regions being thermalized at T1
and T2, respectively, and the heat flux drops to negligible
values �1025. Therefore, the change in D1 can induce a
conductor-insulator transition confirmed by Fig. 2 which
shows that the averaged heat flux J decreases by 2 orders
of magnitude when D1 2 D increases from 0 to 0.7.

In order to understand this phenomenon, let us consider
a linearized version of model (1), which is obtained by
linearizing the Morse potential around yn � 0. The Ham-
iltonian now is written

H �
X

i�n,N

p2
n

2m
1 D̃ny2

n 1
1
2

K� yn 2 yn21�2, (2)

where D̃n � Dna2
n and Dn, an are defined above.

Numerical simulations with Hamiltonian (2) show that
this system displays the same conductor-insulator behavior
in a clearer and sharper way. Indeed, due to integrability,
there are some typical pathologies, such as the presence
of plateaus instead of gradients in the temperature profile,
as predicted by [19]. This is why the transition from con-
ducting to insulating regimes is even sharper than in the
nonlinear case [Fig. 2 (circles)] until a cutoff is reached.

The equations of motion for the system (2), without
thermostats, have plane wave solutions, yn�t� � eikn2ivt,
where the frequency v and momentum k satisfy the dis-
persion relation v2 � 2K 1 2D̃ 2 2K cosk so that the
allowed frequencies are included in the so called phonon
band 2D̃ # v2 # 2D̃ 1 4K.
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FIG. 2. Heat flux as a function of parameter D1 2 D; the
squares refer to the Morse potential, while the circles refer to
the corresponding harmonic limit. Here N � 128, D � 0.5,
K � 0.3, a � 1, and L � 16.

Let us now consider the harmonic and inhomogeneous
chain, with D̃1 fi D̃ in the central region. In order to
propagate through the system a wave should satisfy
both dispersion relations v2 � 2K 1 2D̃ 2 2K cosk
and v2 � 2K 1 2D̃1 2 2K cosk1. If D̃1 fi D̃ only a
fraction of the allowed frequencies of the waves coming
from the left or right regions can satisfy both dispersion
equations with real k1 and therefore also propagate
through the central region. For the remaining frequencies,
the second equation can be solved only by imaginary
k1 � ik̃1 which gives rise to states yn � e2k̃1 n which
decrease exponentially from the edges of the central
region and therefore cannot propagate through it so that
their contribution to the total heat flux J is exponentially
small. By increasing the separation of the two phonon
bands D̃1 2 D̃, the fraction of frequencies which can
give rise to plane waves inside the entire system falls
down and reaches zero as D̃1 2 D̃ . 2K, where the band
separation is larger than the bandwidth, and the bands
do not overlap anymore. In this situation, waves coming
from the thermostats are reflected back from the central
region, the heat flux is exponentially small, and the system
acts as an almost perfect insulator. In the case of partially
overlapping bands one obviously expects an intermediate
situation. The dependence of the heat flux on the band
overlapping is shown by the lower curve in Fig. 2 and its
variation can be calculated with the above analysis.

The addition of a nonlinear term to the Hamiltonian
does not change the substance of the above argument. The
numerically observed smoother decay of the heat flux vs
D1 2 D given by the upper curve in Fig. 2 is due to the
fact that plane waves are not exact solutions for the non-
linear case and the presence of solitary excitations like
breathers may play an important role.
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It is now interesting to investigate whether one can con-
trol the transport properties of the chain by acting on the
temperature of the heat baths without modifying the pa-
rameters of the interaction or of the on site potential. To
this end we recall that, at constant T , the nonlinear model
can be approximated by a fully harmonic Hamiltonian,
with temperature dependent parameters V2�T�, F�T� [13]:

H0 �
X

n�1,N

p2
n

2m
1 V2�T �y2

n 1
1
2

F�T� � yn 2 yn21�2.

(3)

An effective-phonon analysis shows that, while F�T� �
K is temperature independent, V�T� decreases as T in-
creases [13]. The lowering of the band vs the temperature
is of course determined by the parameters of the system,
an, Dn. Typical band profiles are shown in the inset of
Fig. 3, for different parameter choices.

We may now choose parameters a � 1, D � 0.5
(dashed lines in the inset of Fig. 3) for the left and right
regions, and a1 � 2, D1 � 0.375 (continuous line in the
inset of Fig. 3) for the central region. From the inset of
Fig. 3 it is clearly seen that, at low T , the phonon band
of the central region does not overlap with the band of
the other two side regions. In this situation, the heat
flux is nearly zero and the temperature profile shows a
clear insulating behavior, with the first region thermalized
at temperature T1 and the third region at temperature
T2 as shown in Fig. 3 (circles). As we increase both
temperatures T1 and T2, keeping jT1 2 T2j constant, the
bands start to overlap, the temperature profile exhibits a
gradient, and the heat flux increases drastically (Fig. 3).
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FIG. 3. Temperature profiles for system (1) at three different
values of T2 for the same temperature gradient T2 2 T1. Pa-
rameters are N � 128, M � 8, a1 � 2, a � 1, D1 � 0.375,
D � 0.5; T2 � 0.09 (circles), T2 � 0.19 �3�, and T2 � 0.29
(diamonds). Inset: Phonon band profiles vs temperature; the
continuous lines represent the phonon band for a � 2, D �
0.375, the dashed lines D � 0.5, a � 1. The full phonon band
is shown with bandwidth 4K � 1.2.
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As temperature increases, nonlinearity becomes more
and more important and the effective phonon analysis be-
comes less and less meaningful. Nevertheless, numerical
analysis shows that the above argument of band overlap
still remains valid even if a clean thermal gradient is not
obtained and therefore the system does not become a per-
fect conductor.

Once the general mechanism of the thermal conduction
in a composite nonlinear lattice has been understood, this
opens many possibilities. For instance, one can design
a thermal rectifier, as schematized in Fig. 4. A strongly
nonlinear region is sandwiched between two weakly an-
harmonic left and right domains. In the presence of a
thermal gradient in the central part, the effective phonon
frequencies evolve in space in a way that depends on the
orientation of the gradient. This can provide either a good
matching of the bands at the interfaces, leading to a ther-
mal conduction across the system, or a complete mismatch
leading to poor conduction. This picture is oversimplified
for various reasons: the self-consistent phonon method is
approximate; there is not a homogeneous gradient in the
system due to imperfect thermal contact at the interfaces,
and, in spite of nonlinear mixing, in the conducting di-
rection, the frequencies injected at one side of the central
region do not shift gradually, following the phonon band,
to match the band of the other outer region.

In spite of these restrictions Fig. 5 shows that it is pos-
sible to build a simple thermal rectifier where the thermal
flux changes by a factor of about 2 when the direction of
the thermal gradient is reversed. In fact, thermal rectifiers
are already known: a layer of fluid, heated from below
or from above, yields very different thermal flows because
the former case leads to convection and the latter does not.
To our knowledge, it is nevertheless the first time that a
“solid system” (a highly simplified model of a solid in-
deed) shows such a behavior.

In this work we have studied a specific nonlinear lattice,
but the results rely on ideas of general validity, the match-
ing of phonon bands, or the frequency shift associated to
nonlinearity, so that one can expect that various physical
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FIG. 4. Schematic picture of the phonon bands in a “thermal
rectifier” for two directions of the temperature gradient. The
bands in the left and right weakly anharmonic regions do not
change significantly with the orientation of the gradient. In the
central part, when the high temperature side is on the right, the
band evolves in space as shown by the shaded region, while,
if the high temperature side is on the left, the band evolves
according to the dashed lines.
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FIG. 5. Temperature profiles in a thermal rectifier for two op-
posite orientations of the thermal gradient. The dash-dotted lines
show the borders of the different regions in the lattice. The ther-
mostats have a size L � 8, the central region a size M � 128,
and the left and right regions contain 64 particles. The cou-
pling constant is K � 0.18, and the parameters of the Morse po-
tential are D � 4.5, a � 0.5, D1 � 0.7, a1 � 1.4, D0 � 2.8,
a0 � 0.5 in the left, central, and right regions, respectively. The
temperatures of the thermostats are T � 0.1 and 0.45. When the
high temperature is on the right side of the lattice, the average
flux is J � 0.146 3 1023 while, when the thermal gradient is
reversed, the flux drops to J � 0.755 3 1024. Note in this case
the discontinuities at the interfaces between regions which attest
to the bad energy transfer at these points.

systems could exhibit similar behaviors. The simple model
that we have chosen to introduce these ideas involves an
on-site potential which describes the effect of an external
substrate not explicitly included in our calculations. In an
actual device, such a substrate would introduce a second
channel for thermal energy transport, operating in paral-
lel with the channel studied here. This could reduce the
efficiency of the rectifier, unless the thermal conductivity
of the substrate is significantly lower than the conductivity
of the lattice of nonlinear oscillators. Any solid thermal
insulator or weak conductor, can, in principle, be used as
a substrate. A prototype could be a disordered harmonic
lattice [11].

Among the possible applications of this study, one can
think of biological molecules. Controlling the energy flow
in biomolecules is important, for instance, when the en-
ergy of ATP hydrolysis is released locally in a molecular
motor to be used elsewhere after some delay [20]. Elec-
tronic states could be involved, but we show here that a
control of the flow of thermal energy can also be achieved
through the strong nonlinearities which exist in biological
molecules and could even be tuned by events such as a
conformational change. Experiments show that the energy
flow in proteins can be extremely slow [21], providing a
weakly conducting substrate. On the other hand, our re-
094302-4
sults show that a controllable conducting channel attached
to this substrate is conceivable. Whether biomolecules ex-
ploit this possibility is still a completely open issue.
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