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Fresnel Filtering in Lasing Emission from Scarred Modes of Wave-Chaotic Optical Resonators
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We study lasing emission from asymmetric resonant cavity GaN microlasers. By comparing far-field
intensity patterns with images of the microlaser we find that the lasing modes are concentrated on three-
bounce unstable periodic ray orbits; i.e., the modes are scarred. The high-intensity emission directions
of these scarred modes are completely different from those predicted by applying Snell’s law to the ray
orbit. This effect is due to the process of “Fresnel filtering” which occurs when a beam of finite angular
spread is incident at the critical angle for total internal reflection.

DOI: 10.1103/PhysRevLett.88.094102

Understanding the correspondence between classical
phase-space structures and wave functions for a gen-
eral classical dynamics is the goal of investigations in
quantum/wave chaotic systems [1]. Generic Hamiltonian
systems have mixed phase spaces which consist of tori
(which support quasiperiodic orbits), stable periodic orbits
with their associated islands of stability, and unstable
periodic orbits which lie in regions of phase space with
chaotic motion. The simplest possibility, explored in
the early days of the field, was that quantum wave
functions, when projected into phase space, would cover
approximately uniformly each type of region of phase
space. We now know [2] that this situation is realized
only at extremely high quantum numbers and that there
exist states (“scars”) in the chaotic region which remain
localized on unstable classical periodic orbits instead of
filling the chaotic component uniformly [3,4]. The same
considerations which lead to scarred eigenstates of the
Schrodinger equation also imply that the wave equation
of electromagnetism will have scarred modes when its
boundary conditions (e.g., shape of a resonator) generate
chaotic ray motion; and indeed such modes have been
previously observed in microwave cavities [5].

It has been shown that dielectric optical micro-
cavities and microlasers represent a realization of a
wave-chaotic system and one that presents many unsolved
problems for optical physics [6-9].  For example,
quadrupole-deformed InGaAs and GaAs quantum cascade
microlasers which lased on stable bow-tie modes were
found to produce 1000 times higher output power than
undeformed cylindrical lasers of the same type [8,9].
The mechanism of mode selection and the increase of
output power in these devices is not currently understood.
Recently we reported preliminary data [10,11] indicating
that in deformed GaN diode lasers the stable bow-tie
modes are not selected but instead unstable “triangle”
modes are dominant. This was the first time that scars
had been observed in an active as opposed to a passive
cavity.

In this Letter we present newer and more complete data
which show that the emission pattern of these triangular
scarred modes is completely different from that expected
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by applying Snell’s law to the underlying periodic orbit.
Below we interpret this surprising finding as due to an ef-
fect we term “Fresnel filtering” (FF) which arises when
a beam of finite angular spread is partially transmitted
through a dielectric interface near the total internal reflec-
tion condition. This is a generic violation of ray optics
for a focused beam, somewhat similar to the well-studied
Goos-Hianchen shift for a reflected beam [12,13], which
has not to our knowledge been identified in the optics lit-
erature. We are able to clearly identify this effect since
we simultaneously collect far-field emission patterns and
images of the sidewall of the resonator. Two other groups
have very recently reported lasing emission from dielectric
microcavities which they interpret as due to scarred modes
[14,15]; these groups do not study the FF effect we focus
on here.

The experimental setup is shown schematically in
Fig. 1(a). A GaN microlaser of refractive index n = 2.65
is optically pumped at 355 nm and emits at 375 nm.
The structure is based on GaN grown by metal-organic
chemical vapor deposition (MOCVD) on a sapphire
substrate which is etched from a mask using standard
photolithography to create a 2 wm high pillar with a
quadrupolar deformation of the cross section, r(¢) =
ro(1 + €cos2¢) with rp = 100 wm. Light emitted from
the laser is imaged through an aperture subtending a
5° angle and lens onto a charge-coupled device (CCD)
camera which is rotated by an angle 6 in the far field from
the major axis. A bandpass filter restricts the imaged light
to the stimulated emission region of the GaN spectrum.
The CCD camera records an image of the intensity profile
on the sidewall of the pillar as viewed from the angle
6 which is converted from pixels to angular position
¢w. Summing these intensities yields the total far-field
intensity emitted in direction #. Data were taken for
quadrupole lasers with € = 0.12,0.14,0.16,0.18, and
0.20 and for other shapes as well. The full data set will be
analyzed in a later work, but here we focus on the data for
€ = 0.12 which show a simple scarred mode. In Fig. 1(b)
these data are displayed in a color scale which identifies
both the highest emission directions and the brightest
points on the sidewall (labeled by their angle ¢w).
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FIG. 1 (color). (a)Experimental setup, viewed from above, for
measuring simultaneously far-field intensity patterns and images
of the sidewall emission. The lasing modes emit in the plane
shown. (b) Experimental data showing in color scale the CCD
images (converted to sidewall angle ¢y ) as a function of cam-
era angle 6. Three bright spots are observed on the boundary
for camera angles in the 1st quadrant, at ¢y = 17°,162°, —5°.
Inset shows the position of the bright spot in the 1st quadrant vs
deformation, compared to the location of the triangular periodic
orbit [see insets of Figs. 2(a) and Fig. 3(a)]. (c) Calculation of
expected image data using the scarred mode shown in Fig. 2(a);
inset shows calculated and experimental far-field patterns ob-
tained by integrating over ¢y for each 6.

The data show that the maximum intensity in the 1st
quadrant is observed at angle § = 74° and is emitted from
the region of the sidewall around ¢y = 17°; secondary
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spots are observed at ¢y = —5° 162°. The observation
of a small number of well-localized bright spots on the
sidewall suggests a lasing mode based on a short periodic
ray trajectory. The two-bounce stable Fabry-Perot mode
would emit from ¢y = 90° in the direction § = 90°. The
stable four-bounce bow-tie mode, dominant in the devices
of Ref. [8], is also ruled out by our data. It is very low-Q
at this deformation due to its small angle of incidence and
would give bright spots at ¢y = 73°,107°. There is, how-
ever, a pair of symmetry-related isosceles triangular orbits
[inset, Fig. 2(a)] with bounce points very close to the ob-
served bright spots [see inset of Fig. 1(b)]. These orbits
are unstable for e > 0.098, with trace of the monodromy
matrix equal to —5.27 at € = 0.12. The two equiva-
lent bounce points in each triangle at ¢y = =17° and
180° = 17° have siny = 0.42, very near to the critical
value, siny, = 1/n = 0.38, whereas the bounce points at
¢w = *£90°have siny = 0.64 and should emit negligibly
[inset of Fig. 2(a)]. This accounts for the three bright spots
observed experimentally (in the first quadrant) in Fig. 1(b).
Solutions for the quasibound states of this resonator in the
passive cavity can be found numerically [16], both in real
space and phase space, and we find that indeed there exist
such scars [see Figs. 2(a) and 2(b)]. Here we plot both the
modulus of the electric field in real space and the projec-
tion of the Husimi distribution of the mode onto the surface
of section of the resonator [17]. The Husimi distribution
is a (Gaussian) smoothed version of the Wigner transform
of the mode, which represents a wave function or mode as
a phase-space density consistent with the uncertainty prin-
ciple. Projection onto the surface of section then gives a
measure of the density of rays which strike the boundary at
a given position, ¢, and a given incidence angle, y. Ad-
ditionally we evaluate this mode in the far field and find an
emission pattern in good agreement with the experimental
measurement [see inset, Fig. 1(c)]. Finally, if we propa-
gate the scarred mode numerically via a lens transform
[18] we obtain the result shown in Fig. 1(c), which is in
quite reasonable agreement with the experimental data of
Fig. 1(b), taking into account that the lasing mode should
differ somewhat from the resonance of the empty cavity
[16]. Hence we conclude that the dominant lasing mode
in the experiment is such a scarred mode. The data of
Figs. 1(a) and 1(b), however, present an intriguing puzzle
from the point of view of ray optics. A mode localized on
these triangular orbits would be expected to emit from the
four bounce points approximately in the tangent direction
according to Snell’s law; this means that the bright spot
at ¢w = 17° “should” emit into the direction # =~ 115°,
whereas the data clearly indicate that the 17° bright spot
emits in the direction 8 = 72°.

Thus the emission pattern violates the intuitive ex-
pectations of ray optics by 43°, a huge discrepancy [see
Fig. 3(a)]. Moreover, the ratio A/nR = 2.8 X 1073,
seemingly well into the ray optics limit. The resolution
of this apparent paradox is suggested by the numerical
data of Fig. 2(b). It is clear that the scarred mode, while
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FIG. 2 (color). (a) Real-space false color plot of the modu-
lus of the electric field for a calculated quasibound state of
nkr, = 129 (n is the index of refraction, k is the real part of
the resonant wave vector) and € = 0.12 which is scarred by the
triangular periodic orbits shown in the inset. The four points of
low incidence angle which should emit strongly are indicated.
(b) Husimi (phase-space distribution) for the same mode pro-
jected onto the surface of section (SOS) of the resonator. The
x axis is ¢w and the y axis is siny, the angle of incidence at
the boundary. The SOS for the corresponding ray dynamics is
shown in black, indicating that there are no stable islands (or-
bits) near the high intensity points for this mode. Instead, the
high-intensity points coincide well with the bounce points of
the unstable triangular orbits (triangles). The black line denotes
siny, = 1/n for GaN; the triangle orbits are just above this line
and would be strongly confined, whereas the stable bow-tie or-
bits (bow-tie symbols) are well below and would not be favored
under uniform pumping conditions.

localized around the triangle orbit, has a significant spread
in the angle of incidence, A siny ~ 0.2. This means that
we can regard the scarred mode as a (non-Gaussian) beam
with a large angular spread incident near the critical angle
for total internal reflection. We have shown that such a
beam incident on a flat interface is strongly deflected in
the far field away from the tangent direction expected
from Snell’s law [19]; we call this effect Fresnel filtering.
Since A/nR < 1 here, one can neglect the curvature
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corrections, and use the flat interface result to get an
estimate for the expected angular shift. The far-field
intensity pattern /(6) found by the saddle-point method
in [19], is of the form

1(9) = ‘ gr(Sin);e(e)>T<sin);e(0)>J<sinXe(a)>

n

2
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Here P(siny) is the angular distribution of the incomin

beam at y, 7 (siny) = cosy/(cosy + /1 — n?siny?)
is the corresponding Fresnel transmission coefficient, and
J(siny) = cos(xy — x{)J/1/n% — siny?/cosy is the
amplitude factor from the saddle-point integration. y;{ is
the central angle of the incident “beam” and the obser-
vation direction § = y. () for the plane interface, while
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FIG. 3. (a) Solid line: Central beam emission angle ¢ vs
central incidence angle y; for a beam of angular spread equiva-
lent to the scarred mode of Fig. 2 incident on a plane interface.
Dashed line is Snell’s law, and the discrepancy is the Fresnel
filtering angle Afgp. Inset schematic shows the three emitted
“beams” detected in the experiment and illustrates their strong
deviation from Snell’s law (dashed tangent lines). (b) Depen-
dence of angular spread of the “incident beams” vs nkr, for
scarred triangle modes (triangles) and stable (Gaussian) bow-tie
modes; inset shows that the spread decreases as 1/+/nkr, (see
inset) for stable Gaussian modes as predicted, whereas no clear
variation with nkr, is seen for the scarred modes.
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for the equivalent resonator y, = 6 — cos™ '[A(¢y) - &1,
where /(¢ ) is the unit normal at the bounce point. It is the
factor J[siny.(6)/n] which shifts the outgoing maximum
away from the Snell direction related to y; . Near siny; =
1/n, this factor is inversely proportional to the outgoing
beam spread associated with a small change in the incident
beam spread. It follows from Snell’s law that this change
becomes very large near the critical angle, causing the
amplitude at tangent emission to tend to zero [19].

To model the experiment we assume that the probabil-
ity distribution for the incidence angle is approximately
the same as the cross section of the Husimi distribution of
Fig. 2(b) evaluated at the triangle bounce point ¢pw = 17°.
In Fig. 3 we plot the beam emission angle x2(6) defined
as the angular maximum of the far-field pattern vs central
incidence angle y;. We find a very large angular shift
AfFpp, in reasonable agreement with experiment consid-
ering we have neglected curvature effects. The size of
the Fresnel filtering effect depends strongly on the angular
beam spread. For Gaussian resonator modes one can show
that this spread tends to zero as 1/+/nkr, [19] [see inset
Fig. 3(b)]. Since our numerical simulations of the scarred
mode are for nkr, =~ 129, whereas the experiment corre-
sponds to nkr, = 4, 440, one may ask whether the large
Fresnel filtering angle found in Fig. 3(a) (for nkr, = 129)
will extrapolate correctly to agree with the experiment.
As there is currently no theory of this scaling for scarred
modes, we studied the scaling of the angular width numeri-
cally [Fig. 3(b)].

We found no detectable decrease in the angular width
with nkr,, in clear contrast to the behavior of the Gaussian
modes. It is also likely that at this high nkr, we have
multimode lasing which effectively increases the angular
beam width.

In conclusion, we have found that the dominant las-
ing mode in quadrupolar GaN microlasers are unstable
(scarred) modes. For resonators with chaotic ray dynam-
ics, such scarred modes play a special role as they allow
high-Q resonances despite the ray chaos. Such modes ex-
hibit a novel emission pattern, which is completely dif-
ferent from that expected by applying Snell’s law to the
underlying periodic ray trajectory, due to the phenomenon
of Fresnel filtering.
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