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Numerical Characterization of High Harmonic Attosecond Pulses
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A numerical simulation of attosecond harmonic pulse generation in a three-dimensional field-
ionizing gas is presented. Calculated harmonic efficiencies quantitatively reproduce experimental
findings. This allows a quantitative characterization of attosecond pulse generation revealing information
currently not accessible by experiment. The rapid phase variation and spatiotemporal distortions of
harmonics are smaller than anticipated, allowing focusing of 30-nm, 750-as pulses to intensities in
excess of 1013 W�cm2. Feasibility of such pulses brings novel applications such as extreme ultraviolet
nonlinear optics and attosecond pump probe spectroscopy within reach.
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A number of methods have been proposed for attosec-
ond(as)-pulse generation [1]. High harmonic generation
(HHG) is currently the experimentally furthest advanced
method that can supply single as-pulses [2,3], which is es-
sential for potential applications. While the femtosecond
regime presents the natural time scale of electronic mo-
tion in the mean field potential of solids and molecules,
as-pulses will allow the temporal resolution of correlated
electron processes, such as dephasing in metals or core
electron processes (e.g., Auger decay) in atoms. More-
over, the high peak intensities associated with short pulse
durations are expected to allow the extension of nonlinear
optics to the extreme ultraviolet (xuv) regime [4].

One of the main obstacles for the realization of such
applications is the lack of experimental tools for the char-
acterization of harmonic as-pulses. Although nonlinear
autocorrelation [4] and linear cross-correlation methods [5]
for harmonic pulse measurement were proposed and partly
realized, no single as-pulses were measured so far. Con-
sequently, not even the peak intensity of as-pulses is ex-
perimentally accessible to date. A complete experimental
characterization of harmonic pulses that includes spa-
tiotemporal phase and envelope appears to be out of reach
for the nearer future. As a result, important problems
and questions have remained unanswered. For example,
the position of the harmonic as-pulse relative to the laser
front changes with the transversal variation of the laser
intensity, thus smearing out the as-time structure. Further,
harmonic radiation exhibits a rapidly oscillating phase,
which may lead to severe spatiotemporal distortions during
propagation or focusing, destroying as-resolution. Fi-
nally, a central question for as-pump-probe spectroscopy
is whether sufficient intensities can be delivered at
xuv wavelength.

The absence of experimental methods calls for the
development of numerical models capable of supplying
0031-9007�02�88(9)�093905(4)$20.00
detailed, quantitative information on as-pulse generation,
which is the purpose of the present paper. A realistic
simulation of HHG must account for the interplay between
ionization, harmonic generation, absorption, and propaga-
tion on a quantitative level. This requires a self-consistent
solution of the propagation equations [6], taking properly
account of macroscopic (propagation) effects, together
with a quantitatively accurate calculation of the micro-
scopic dipole moment of HHG [7]. Although each of
these problems was already treated seperately [6,7], a
combined solution of both was beyond the reach of current
computer capacities so far. To this end, we combine for
the first time a self-consistent solution of the macroscopic
three-dimensional Maxwell equations with the response
of the medium on an atomic level, where the atomic
response is drawn from solutions of the time-dependent
Schrödinger equation of three-dimensional models for
the respective gas species. Our approach unifies and
generalizes previous numerical approaches to give the first
self-consistent, three-dimensional analysis of HHG. The
calculated conversion efficiencies for various noble gases
are found to be in good agreement with experiment,
demonstrating that our numerical model presents a valid
tool for the quantitative characterization of harmonic
as-pulse generation.

Going beyond what is accessible by present experimen-
tal methods, we find that harmonics are generated in pulses
of unexpectedly favorable characteristics. Spatiotemporal
effects are smaller than anticipated [8] allowing the focus-
ing of 750-as pulses down to a beam radius of 1.5 mm
without significant spatiotemporal distortions, where peak
intensities approach 1014 W�cm2. This intensity is suffi-
cient for nonlinear optics and as-pump-probe spectroscopy
in the 20–30 nm wave length range.

For the numerical analysis of HHG, Maxwell’s equa-
tions are solved in the form introduced in Ref. [9] for the
laser electric field El
≠jEl�j, t� 2 D̂El�j, t0� � 2
1
2c

Z t
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and for the harmonic electric field Eh,
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We have introduced a coordinate frame moving at the
speed of light in vacuum, t � t 2 z�c, j � z. The
electric field is chosen to propagate in z direction and is po-
larized in the x direction; for the transversal profiles cylin-
drical symmetry is assumed. Diffraction is determined by
the operator D̂ � �c�2�=2

�

Rt
2` dt0. Inclusion of diffrac-

tion, self-defocusing, and self-phase modulation by the
presence of free electrons is crucial for a correct treatment
of the highly nonlinear propagation of the fundamental
laser pulse. For the parameters of interest here, diffraction
of the harmonic pulse is negligible and D̂ � 0 in Eq. (2).

Equation (1) is solved subject to the initial condition
El�0, t� � 2dAl�dt, with Al�t� � E0�v0 exp�2�r�
a�2� sech�1.76t�tp� sin�v0t�. Here, E0, v0, tp , and
a represent the peak electric field strength, laser center
frequency, FWHM (full width at half maximum) pulse
duration, and beam waist, respectively. In Eq. (2), ah

denotes the xuv absorption coefficient and Ph � kkna 3

dh�El�, the high frequency part of the macroscopic
polarization, is determined by the laser electric field El re-
sulting from Eq. (1). Here, na is the density of atoms, k �
8.4773 3 10230 C m is the conversion factor between
atomic and SI units, and the single atom dipole moment
dh in atomic units is determined by Eqs. (34)–(39)
in Ref. [9]. The parameter k, which corrects for the
presence of the Coulomb potential during HHG, is dis-
cussed below. Further, the plasma frequency is given by
vp � �e2ne�me0�1�2, and c, e, m, ´0, Wb , and z �1�, refer
to the vacuum light velocity, electron charge, electron
mass, permittivity of free space, atomic ionization poten-
tial, and linear susceptibility of neutral atoms, respectively.
The density of free electrons is determined by

ne�j, t� � na

µ
1 2 exp

∑
2

Z t

2`
dt0 w�El�j, t0��

∏∂
, (3)

where w�El� is the optical field ionization rate.
For the given laser parameters, the wave equations

(1) and (2) are practically identical with Maxwell’s
equations [9]. However, the microscopic model contains
approximations which must be corrected for in order to
determine absolute numbers of the harmonic efficiency.
Our calculation of the single atom dipole moment is based
on an extension of the model of Lewenstein et al. [10].
The original approach relies on the Keldysh approxima-
tion [11], i.e., the effect of the Coulomb potential on the
ionized part of the electron wave function is neglected.
Although qualitatively this was demonstrated to give
excellent results [9], no quantitative predictions of HHG
can be made at this level of approximation. HHG consists
essentially of three steps, which are optical field ioniza-
tion, propagation of the free electron in the continuum,
and recombination to the ground state of the parent ion
[12]. Omission of the Coulomb potential introduces an
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error in all three steps. In Ref. [13] optical field ionization
in dh was corrected for the presence of the Coulomb
potential [9]. Coulomb corrections for the remaining
two steps are determined from numerical solutions of
the three-dimensional Schrödinger equation in the single
active electron approximation [14]. In that model the
valence electron moves in the combined fields of the
laser pulse and of the atomic core. The core electrons are
assumed to remain, unaffected by the laser field, in their
ground-state orbitals. The core potential can be deter-
mined either by a Hartree Fock-type method [14], or by
using a shielding potential [15]. We use the second method
which was shown to reproduce experimental findings in
great detail [16]. The parameters of the shielding potential
are optimized to correctly reproduce the ground state
energy and the transition energies to the first excited s-
and p state. Solution of the time-independent Schrödinger
equation [17] for the optimized potential yields the static
ionization rates w for Ar and Ne; see Fig. 1. These ioniza-
tion rates are used for the calculation of ne in Eq. (3)
and dh in Eq. (35) of Ref. [9]. Comparison of the dipole
moment dh obtained from our strong field model with
a numerical solution of the time-dependent Schrödinger
equation for various laser parameters yields a Coulomb
correction factor for continuum propagation and re-
combination. The correction factors for Ar and Ne are
found to be k � 1.4, 2.4, respectively. The parameter k

varies by only 30% over the relevant range of intensities
and harmonic orders and, therefore, was assumed to be
constant. We tested our model by comparing the numeri-
cal results with the experimental data on the conversion
efficiencies in Ar and Ne [9], see Fig. 2. The parameters
are I0 � 3.5 3 1015 W�cm2�8.8 3 1014 W�cm2, tp �
7 fs�7 fs, a � 30 mm�60 mm, propagation length 3 mm�
3 mm, na � 7.9 3 1018 cm23 �225 Torr��1.05 3
1019 cm23 (300 Torr), and z �1� � 8.3 3 1024�2.64 3

1025 [18] for Ar and Ne, respectively. The frequency
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FIG. 1. Ionization rate in atomic units versus electric field
strength in atomic units. The full and dashed lines refer to Ne
and Ar, respectively.
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dependent xuv absorption coefficient ah is taken from the
home page of the Center for X-Ray Optics, Materials Sci-
ences Division, Lawrence Berkeley National Laboratory
[19]. Note that here we have specified the laser peak inten-
sity, whereas in Ref. [9] an averaged intensity was given
to facilitate a comparison to one-dimensional calculations.

Our calculations are compared with experiments in
Fig. 2, which present the first major result of our paper.
Despite uncertainties in the experimental parameters the
overall agreement is quite satisfactory, showing that our
model is capable of characterizing HHG in terms of
absolute numbers. The agreement between experimental
and numerical data is accurate to within a factor 2–3 for
a broad range of harmonic orders. The deviation for low
harmonic orders in Argon depends on the absorption data
in the region below N � 27, where absorption increases
drastically. A reduction of the absorption coefficient by
a factor of 2 gives agreement with experiment within a
factor of 3. The discrepancy in the cutoff region of Ne
arises from uncertainties in the experimental parameters.
Either a reduction of the refractive index by a factor of 2
or a reduction of the gas pressure by 30% would result in
an increase of the signal in the cutoff region by a factor
of 4. The lower harmonics are not affected by these
uncertainties. Except for the absorption coefficient, the
most important theoretical input in our calculations is the
ionization rates. Allowing for an uncertainty of a factor
of 2 in these rates affects the conversion efficiencies in
Fig. 2 by less than a factor of 3.

The good agreement between experiment and theory
opens the possibility to perform a quantitative analysis
of harmonic as-pulses, giving duration, peak intensity,
temporal and spatial shape, and phase of harmonic pulses.
We choose the following parameters: 2 mm propagation
distance in Ar, na � 1.75 3 1019 cm23 (500 Torr), tp �
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FIG. 2. Comparison of experimentally measured conversion
efficiencies in Ar and Ne [9] with numerical results. The
parameters are given in the text. The full line (numerics) and
squares (experiment) represent Ne data, the dash-dotted line (nu-
merics) and triangles (experiment) refer to Ar.
093905-3
5 fs, a � 150 mm, I0 � 1.6 3 1014 W�cm2, l0 �
0.8 mm. A few-cycle laser pulse generates a smooth
harmonic spectrum close to the cutoff, which corresponds
to a single as-pulse [3,20]. The laser intensity is chosen
in such a way that the cutoff lies around N � 30, where
HHG is most efficient; see Fig. 3. The steep drop of the
low frequency part of the spectrum is due to the abrupt
rise of the absorption coefficient below N � 27. Apart
from small fluctuations [21] the spectrum is smooth across
the pulse cross section and ranges over approximately
15 harmonics. The Fourier transform of the spectrum
for N . 27 corresponds to a 200-as pulse. As the best
available xuv mirrors have a bandwidth covering only
about 3 harmonic orders [22], the full bandwidth in
Fig. 3 cannot be utilized for focusing. The finite spectral
width of the mirror is taken into account by filtering the
spectrum with a flat top profile extending from N � 27
to N � 30. We assume here ideal focusing by a quadratic
mirror with focal length f � 18 mm. Limitations im-
posed by aberration and mirror dispersion on as-pulse
generation will be subject to further investigations. The
resulting pulse is depicted in Fig. 4. The pulse duration is
750 as, the beam radius is 1.5 mm, and the peak intensity
is Ix � 5 3 1013 W�cm2.

Figure 4 presents the second major result of our pa-
per. Pulse distortions due to spatiotemporal effects or due
to the rapid variation of the harmonic phase are consid-
erably smaller than anticipated, resulting in a high qual-
ity as-pulse. This can be attributed to the fact that the
as-harmonic spectrum is close to the cutoff, where only
a small range of laser intensities contributes to HHG.
As a result, spatial and temporal distortions arising from
the strong dependence of HHG on the laser intensity are

FIG. 3. Harmonic spectrum generated in Ar gas; for parame-
ters see the text. The radial coordinate r is perpendicular to the
propagation direction.
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FIG. 4. Fourier transform of the spectrum between N � 27
and N � 30 in Fig. 3 after focusing. Ideal focusing by a
quadratic mirror with focal length f � 18 mm has been
assumed.

minimized. Calculations for higher laser peak intensities
show that away from the cutoff more than one as-pulse is
generated and that the temporal and the spatial quality of
the as-pulse decreases with decreasing harmonic order.

As a result of the high pulse quality unexpectedly high
xuv peak intensities are obtained. Our calculations are
based on idealized assumptions for filtering and focusing,
neglecting aberration, reflection losses and other effects,
thus, giving an upper value for the achievable peak inten-
sity. Note, however, that the pulse energy chosen in our
calculation is 1 order below the maximum pulse energy
realizable in few-cycle Ti:S laser systems [9]. Hence, by
putting a factor of 10 more energy into the laser pulse and
by increasing the pulse area such that the peak intensity
remains unchanged, our calculation predicts a maximum
peak intensity of 5 3 1014 W�cm2. Therefore, even in the
presence of losses, realization of intensities between 1013

and 1014 W�cm2 in the 20-30 nm range is realistic. Ac-
cording to theoretical predictions [23], such intensities are
sufficient to realize first xuv nonlinear optics experiments
in the wavelength range above 20 nm.
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