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We present an analytical approach to random lasing in a one-dimensional medium, consistent with
transfer matrix numerical simulations. It is demonstrated that the lasing threshold is defined by trans-
mission through the passive medium and thus depends exponentially on the size of the system. Lasing
in the most efficient regime of strong three-dimensional localization of light is discussed. We argue that
the lasing threshold should have anomalously strong fluctuations from probe to probe, in agreement with
recent measurements.
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Random lasing, predicted theoretically by Letokhov [1]
more than thirty years ago and discovered experimentally
in the past decade [2–5], attracts much attention because
of its intrinsic interest and high potential for many prac-
tical applications [6]. Theoretical understanding of this
phenomenon remains imperfect.

The original approach [1] studied the transport of the
disorder-averaged light intensity that can be described by
a diffusion formalism. For a random amplifying medium
of size L with a mean-free path length of light lt and gain
length lg the diffusion model predicts that the lasing insta-
bility emerges, when the length of the diffusion path L2�lt

reaches the gain length lg. Analysis of the interference
effects in terms of coherent backscattering corrections [7]
does not really modify this criterion. Practically, lasing
commences at a different gain than the diffusion model
predicts, as seen in both experimental and numerical stud-
ies [4,8–10].

The discrepancy between theory and experiment sug-
gests that a physical mechanism, different from diffusive
motion, is responsible for lasing from a random medium.
Light transport through random media can be described
using a discrete sequence of channels between the input
and output (see, e.g., [11,12]). Far from the light local-
ization situation the transmissive and reflective properties
of a disordered medium can be described by conductive
channels. Interference of those channels leads to the av-
erage diffusive behavior of the intensity. This picture can
be different in amplifying media. In fact each channel a

can be crudely characterized by its path length La or the
travel time ta. If we characterize the amplifying proper-
ties of the medium by the gain length lg or by the gain
rate g � y�lg (y is the speed of light inside the medium)
then each channel a will show exponential amplification
Aa ~ exp�La�lg� � exp�gta �. This exponential enhance-
ment selects only channels that have the longest travel
time and are not important for the transport in the non-
active medium. One possible example of such channels is
the ray optics paths forming closed loops [13]. The light
trapped in that loop spends much more time inside the
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medium than the standard diffusion time and therefore ex-
periences larger amplification. These rare channels can be
most important in the regime of strong amplification close
to lasing. The analysis of these channels differs from the
diffusion situation. Solution of the problem for three di-
mensions is very complicated. In our previous work [9,10]
we presented a phenomenological and numerical approach
to lasing in ZnO disks showing that even in the extremely
open system of resonant scattering particles the fluctua-
tions in scattering channels affect lasing threshold signifi-
cantly. However, it is important to have an analytical
approach that can be used for qualitative understanding of
the phenomenon.

In this Letter we study lasing in a one-dimensional (1D)
medium where the analytical approach is simplest to de-
velop. A random 1D system will be considered in a model
similar to Ref. [8]. This model enables us to identify the
relevant channels responsible for lasing as the quasistates
(decaying eigenmodes inside the medium) and to compute
the lasing threshold in the regime of Anderson localization.
We will show that the lasing threshold decreases exponen-
tially with the size of the sample. In fact the photons cre-
ated inside require an exponentially long time to leave the
medium because the transmission is exponentially small in
the localization regime. Therefore the exponentially small
gain is needed to start lasing.

The results are applicable to higher dimension in the
strong localization regime. Actually the regime of strong
localization of light is expected to be most efficient for
lasing because of the strength of intensity trapping by lo-
calized states. There exist at least two experimental studies
where strong localization of light has been found [14,15].
Our results can be applied to random lasing in these sys-
tems. In particular we predict anomalously strong fluctua-
tions of the lasing threshold from probe to probe in the
localization regime. Similar behavior has been discovered
in the recent measurements of lasing from the defect states
in the forbidden band in liquid crystals [16].

Consider lasing from a 1D scattering medium situated
along the x coordinate from x � 0 to x � L. The medium
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is taken to be uniform in two other directions and we re-
strict our consideration to propagation along the x direc-
tion only. Assume that it has a set of scattering particles
(or layers), separated from each other by air and located
randomly. Practically this characterizes the structure of
random layers homogeneous in directions parallel to the
interface that can be constructed using random stacking
faults in inverted opals or multiple quantum well struc-
tures [17].

One can choose an arbitrary point in the middle of the
structure xs � L�2 and place a source there. Assume the
source is located in the air. This setup is relevant for
the lasing problem since the source of light of frequency v
is located inside the medium and the generalization for
different locations of the source is straightforward. To
describe light intensity, one can characterize the left and
right halves of the medium by their reflection and transmis-
sion coefficients rl, tl and rr , tr for left and right halves,
respectively.

To study random lasing, one needs to introduce the am-
plification. The easiest way is to assume that the frequency
has an imaginary correction v ! v 1 ig�2 describing
the gain everywhere inside the sample. Then the reflection
and transmission coefficients become a function of a com-
plex frequency rl�v 1 ig�2�, rr�v 1 ig�2�. The factor
1�2 is introduced since the correction to the frequency is
responsible for the amplitude gain, while g describes the
amplification of the intensity. For the sake of simplicity
the gain is taken to be uniform.

The lasing instability takes place when the gain g is suf-
ficiently large so that at some frequency v the intensity of
the light becomes infinity. As we will see, this criterion
is equivalent to the singularity in the transmission through
the medium suggested in several works as the lasing crite-
rion [8,18], but our approach is more suitable for the real
lasers where the source of emission is always located in-
side the material [4].

The intensity of the emission at the given frequency
v near the source point is defined by the Green function
G�x, xs� of the whole problem. One can reproduce
this Green function as the superposition of two plane
waves G�x, xs� � creik�x2xs� 1 rre2ik�x2xs�, x . xs;
G�x, xs� � cle2ik�x2xs� 1 rreik�x2xs�, x , xs; k � v�c,
and it should be continuous at x � xs, while its derivative
should have a jump at x � xs that is set to unity. The
coefficients of the Green function can then be expressed
as (the requirement to have outgoing waves inside of the
medium is applied)

cr �
1

iv

1 1 rl

1 2 rlrr
, cl �

1
iv

1 1 rr

1 2 rlrr
. (1)

The lasing instability emerges when the denominator in
Eq. (1) reaches zero:

rl�v�rr �v� � 1 . (2)

Since the total transmission (from the left to the right)
through the system can be expressed similar to Eq. (1),
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T � t�
r tl��1 2 rlrr � [11], the criterion Eq. (2) is equiva-

lent to the transmission based criterion [8,18,19].
As we will see the lasing threshold g in the strong local-

ization regime is very small, and an approximate represen-
tation of the lasing threshold through the known parameters
of the medium without gain is possible. The lasing insta-
bility should show up near some maximum of the intensity
(or transmission) for the nonactive medium. Consider the
very long system without gain having size L much larger
than the transport length lt . In this regime the absolute
values of the reflection coefficients rl, rr are expected to
be close to unity. Therefore the maximum intensity occurs
at a frequency where the product of reflection coefficients
is a real, positive number. In other words, the sum of re-
flection phases �r � jrjeiF� should be a divisor of 2p,

Fr�v� 1 Fl�v� � 2pn, n � 0, 1, . . . . (3)

We denote this condition as resonance. It can be shown that
for the closed system (there are 100% reflecting mirrors
somewhere at x , 0 and x . L) the resonances approach
the eigenmodes of the whole problem.

Lasing emerges, when the denominator in Eq. (1) be-
comes zero (divergency of intensity and transmission).
Since in the passive medium the absolute values of the
reflection coefficient jrl j, jrrj are less than unity, one
needs to add some gain to reach the singularity. At suf-
ficiently small gain, one can use an expansion of phases
F�v 1 ig�2� over the gain g in Eq. (2) at the resonance in
Eq. (3), where the product of nonamplified reflections is a
real number close to unity (similar to the analysis of the ab-
sorption effect on the photon lifetimes inside the medium
[19]). The expansion yields the lasing condition

jrrrlj exp��g�2� �dFr�dv 1 dFl�dv�� � 1 , (4)

The frequency dependence of the absolute values of the
reflection coefficient is neglected here because the large
sample length leads to the absolute value of the transmis-
sion close to 1 �1 2 jrj ø 1�. Equation (4) generalizes
the standard equation of a laser (cf., e.g., [2,3]) for a 1D
disordered medium. The factor in the exponent represents
the product of the gain rate and the time that the photon
spends trapped inside the medium. Since both reflection
coefficients are close to 1 the solution for the lasing thresh-
old can be conveniently expressed in terms of the transmis-
sion coefficients tl, tr as

gc �
jtr j

2 1 jtlj
2

dFr �dv 1 dFl�dv
. (5)

To verify the applicability of the linear expansion we have
computed the lasing thresholds for a long 1D chain of 40
scattering particles with refractive index n � 2 (size 1 and
average interparticle distances equal 1) at frequences be-
tween 0.5 and 1.5 (we set the speed of light in vacuum
c � 1). The methods developed in Ref. [10] have been
used and the results have been compared with the predic-
tion [Eq. (5)]. For all our probes we found that Eq. (5) is
satisfied with the accuracy of 0.1%. This is not surprising
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because the localized modes are not strongly affected by
the gain [20].

Equation (5) has a straightforward kinetics interpreta-
tion similar to [21]. One can consider the time evolution
of the light intensity trapped inside the medium in the lo-
calized state (all states are actually quasilocalized because
the physical system is open). The inverse sum of phase
derivatives represents the attempt frequency to escape out
of the trap, while the sum of transmissions is the proba-
bility for each attempt to be successful. Then the time evo-
lution for the survival probability p of the intensity inside
the media can be written as

dp

dt
� gp 2 gcp . (6)

At g � gc the gain matches the loss, and the lasing insta-
bility emerges. Our consideration fails above the lasing in-
stability, but the predictions for the lasing threshold should
be valid. Almost identical arguments can be applied to a
localized system of higher dimensionality. The lifetime of
excitations trapped by localized modes is similarly defined
by the transmissions from the center of the localized state
outside of the medium. Since the transmission in the
localization regime behaves similar to 1D systems [11] all
results remain valid there. Further consideration of the
lasing threshold is based on the above analogy. The analy-
sis of contributions of different localized states uses the
simple picture of exponential localization inside a lengthy
medium. Note that the general problem of transmission
through resonances is more complicated but the simplified
consideration below remains qualitatively valid. The
analysis of the problem in detail will be published
elsewhere.

Consider the lasing threshold in the case of uniform gain
rate g applied for frequencies within the range �v0, v0 1

dv�. Experimentally dv is very small [4] compared to v0
and the average properties of the medium can be consid-
ered as invariant within that frequency range. Eigenoptical
modes inside the medium corresponding to the resonances
[Eq. (3)] can be described by their density of states r�v�
per unit energy and length.

In the regime of the strong localization the transmission
decreases exponentially with the size of the sample

t � exp�2L�l1� , (7)

where l1 is the localization length that is close to the trans-
port length lt. Large transmission fluctuations can be de-
scribed by the logarithmically normal distribution (see,
e.g., [11]) with the standard deviation of the transmission
logarithm

p
L�l2, l2 � lt (see, however, [22]).

We consider a long system, so that the localization ra-
dius l1 at the reference frequency v0 is smaller than the
system length, and the number of states (resonances) Nl

within the amplified frequency range dv is large

l1 ø L, Nl � r�v0�Ldv ¿ 1 . (8)

Each resonance state can then be described by the coor-
dinate of its center x and two transmission coefficients,
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with the most significant coordinate dependence given by
tl�x� � exp�2x�l1� and tr�x� � exp�2�L 2 x��l1�. The
gain needed to cause this state to lase Eq. (5) also de-
pends on the reflection phase derivatives. These deriva-
tives describe the dwell times of light sent from the center
of the localized state and reflected by the right and left
parts of the sample. The distribution of dwell times has
been derived for a 1D system in [23]. The most probable
time can be estimated as the ratio of the transport length
and the characteristic speed of light within the medium
t0 � dF�dv � d�kl1��dv � l1�y, while all moments
of the distribution diverge for the infinite sample because
at large time t it decreases as 1�t2 only. Then the lasing
threshold for the localized state centered at coordinate x
can be estimated as

g�x� �
1
t0

�exp�22x�l1� 1 exp�22�L 2 x��l1�	 . (9)

Lasing occurs when the gain reaches the minimum value of
g�x� over all involved states x. This minimum is realized,
when the localized state is centered at the middle of the
sample x � L�2:

g ~ exp�2L�l1� . (10)

Thus the lasing threshold depends exponentially on the
total length of the system if Eq. (8) is satisfied.

The predicted exponential dependence [Eq. (10)] of the
lasing threshold on the system size disagrees with the nu-
merical simulation results [8]for a 1D random system that
gives a power law dependence on the localization length
(and, accordingly, on the system size L). This discrepancy
is probably due to the relatively short lengths L compared
to the localization length used in Ref. [8] and the large las-
ing threshold fluctuations.

The lasing threshold strongly fluctuates from mode to
mode due to the variation in the center of localization x
[Eq. (9)], transmission [11], and dwell time [23] fluctu-
ations. It can be shown that the lasing threshold distri-
bution is defined by the parameter Nm � r�v�dv

p
Llt

that is the number of resonant modes in the middle of
the sample, having similar transmissions. This distribu-
tion changes from the power law distribution at Nm ø 1
to the approximately logarithmically normal distribution
at Nm $ 1. In both cases (especially in the first one), the
fluctuations of lasing threshold are much larger than its
typical value, in agreement with [8]. Strong fluctuations
of lasing threshold depending on the pump position, trans-
mission, and dwell times have been recently demonstrated
by Vanneste and Sebbah [20] in a numerical analysis of
the two-dimensional system. A qualitatively similar inter-
pretation has been suggested there.

Strong fluctuations of lasing threshold are also con-
firmed by the numerical simulations. The effect of dwell
time (phase derivatives) fluctuations [23] of the lasing
threshold [Eq. (5)] seems to be less significant than the
fluctuations of transmissions possibly due to the special
choice of the middle point (the center of resonant states). It
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is clear that the transmissions at resonant frequences (and
corresponding dwell times) have their own statistics dif-
ferent from that in the off-resonant regime and they are
generally much larger. One important consequence is the
increase of the sample transparency in the lasing regime
since the majority of pumping energy will be distributed
between resonant states. This effect has been seen in some
thin samples, but there are no systematic studies yet.

Our arguments are directly applicable to several materi-
als including layered or quasi-1D media [14,17] and ma-
terials with a 3D localization of light [14,15]. Photonic
crystals, where the localized states are formed by the de-
fects, creating excitations within the forbidden band [16],
are also of special interest. The pumping frequency for
these materials can be chosen far above the localization
threshold (or near the pass band [22] for planar layer
structures). An interesting alternative opportunity can be
reached by placing the dye far from the sample boundary
[a preliminary attempt for a TiO2 based random laser (e.g.,
[9]) leads to the reduction of the lasing threshold by the fac-
tor of 2 for samples very far from Anderson localization].
The characteristic penetration length lp of the pumping en-
ergy can then be made much longer than the localization
length at the emission frequency l1. The lasing thresh-
old will then decrease exponentially with the penetration
length, as exp�2lp�l1�, until obtaining its minimum value
needed to reach finite gain. As discussed above, strong
fluctuations of lasing threshold are expected in the regime
of Anderson localization. Such fluctuations have been re-
cently observed in a liquid crystal based random lasing
system [16].

We have outlined a theory for random lasing in the
regime of the strong localization. The lasing threshold de-
creases exponentially with the size of the system. This can
lead to very efficient lasing based on existing [14,15] and
possibly new materials with strong localization of light.
Random lasing can help one to study the strong localiza-
tion transition based on the exponential dependence of the
lasing threshold on the sample thickness and the huge fluc-
tuations of the lasing threshold that far exceed its typical
value.
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