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Anomalous Refraction and Diffraction in Discrete Optical Systems
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We experimentally prove that light propagation in a discrete system, i.e., an array of coupled wave-
guides, exhibits striking anomalies. We show that refraction is restricted to a cone, irrespective of the
initial tilt of the beam. Diffraction can be controlled in size and sign by the input conditions. Diffractive
beam spreading can even be arrested and diverging light can be focused. The results can be thoroughly
theoretically explained.
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Our understanding of light propagation primarily derives
from isotropic media. The law of refraction predicts that
the tilt of a beam traversing an interface between two me-
dia will monotonously grow with the angle of incidence.
The law of diffraction predicts beam spreading being com-
pletely determined by the ratio of wavelength and width,
only slightly affected by the refractive index and indepen-
dent of the tilt. The reason for this behavior is the rotational
symmetry of the isotropic medium. If this symmetry gets
lost, as, e.g., in a stratified medium (Bragg mirror) or a dis-
crete system (array of waveguides), these canonical laws
of refraction and diffraction cease to hold. The mathe-
matical background is the relation between the transverse
(k0) and the longitudinal wave number component (b0) of
the wave vector, which constitutes the diffraction relation
analog to the dispersion relation in the temporal domain.
In two-dimensional isotropic media with a dielectric con-
stant ´r, we have b0 � 2p�l

p
´r 2 k02, whereas in the

general case this is a more complex function b0 � f�k0�.
Here we will demonstrate anomalies in light refraction

and diffraction in evanescently coupled waveguide arrays
(“discrete” refraction and diffraction).

The first experiments on waveguide arrays date back to
the early 1970’s [1], when the first evidence of a discrete
kind of diffraction was observed. But, only in the 1980’s,
Haus and co-workers revived the subject by showing some
discrete imaging properties of waveguide arrays [2]. At the
end of the 1980’s, Christodoulides and Joseph predicted
the existence of spatially solitary waves in nonlinear ar-
rays [3] and initiated a great deal of theoretical work on
discrete optical systems (for references, see [4]). This evo-
lution culminated in the experimental evidence of discrete
solitons in AlGaAs arrays in the late 1990’s [5]. Although
the peculiarities of discrete diffraction were identified as
the origin of interesting nonlinear phenomena [6], such as
beam defocusing in focusing Kerr media, and management
of diffraction has been shown to be feasible [7], the very
linear properties (discrete refraction and diffraction) have
not been studied comprehensively yet. Recently the linear
subject was reconsidered in demonstrating the appearance
of photonic Bloch oscillations in waveguide arrays [8]. It
0031-9007�02�88(9)�093901(4)$20.00
is the aim of this Letter to draw a comprehensive picture of
discrete diffraction and refraction in homogeneous wave-
guide arrays by confronting experimental and theoretical
studies of this subject.

The experiments were performed on homogeneous ar-
rays of 75 waveguides in an inorganic-organic polymer
(nco � 1.554) on thermally oxidized silicon wafers
(nsub � 1.457) with polymer cladding (ncl � 1.550) (see
Fig. 1). The 6 cm long samples were fabricated by uv
lithography on 4 in. wafers. Each waveguide had a cross
section of 3.5 3 3.5 mm2 and provided low loss single
mode waveguiding (,0.5 dB�cm) at l � 633 nm. The
uniform separation of adjacent guides was L � 8.5 mm
to achieve efficient evanescent coupling.

A HeNe laser beam was shaped with respect to width
and tilt using a telescope and coupled into the array via the
entrance facet with a microscope objective. The light emit-
ted from the end facet is detected by a camera. Because
light propagation along the array cannot be monitored, it
is instead visualized by numerical simulations.

Obviously discreteness will matter if the input beam
width compares to the period of the discrete system L. In
Fig. 2 the most extreme case of a single channel excitation
is displayed where the field shown represents the Green’s
function of the array [4,5], which differs from the con-
tinuous counterpart [6] considerably. On the other hand,
intuition tells that for wide beams the continuous approxi-
mation should hold. Surprisingly, already an essentially
four waveguide wide Gaussian input beam was found to
retain its Gaussian shape upon propagation. To observe
substantial diffractive spreading for a realistic propagation

FIG. 1. Polymer waveguide array of 75 single mode wave-
guides (before applying the polymer cladding).
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FIG. 2. A narrow input beam excites a single guide and pro-
duces a unique type of diffraction pattern, which is the Green’s
function of the array. Furthermore, discrete diffraction and re-
fraction of wide tilted input beams is tested by off-axis illumi-
nation of the input objective.

length, we choose this width in all the experiments. In
Fig. 3 the most spectacular consequences of anomalous
refraction and diffraction are displayed. In Figs. 3(a)
and 3(c) measurements and modeling show that, as in an
isotropic medium, diffraction compares for two different
input angles. But refraction is anomalous; i.e., the beam
which is tilted 2.2± in front of the input facet exits the
array at the same location as the untilted beam. On the
contrary, Fig. 3(b) is an example for normal refraction but
anomalous diffraction. The beam, which is tilted by 1.1±,
crosses the array diffractionless.

To systematically study these anomalies, we varied the
angle of incidence of the beam. This was achieved by
shifting the laser beam off axis in front of the in-coupling
microscope objective, resulting in a stationary focus on the
input facet with a tilt proportional to the off-axis transla-
tion. We monitored the field at the output facet, the shift
of which is proportional to the angle of propagation inside
the array. For an isotropic system, this shift would monoto-
nously grow with the tilt, and the beam width at the exit
face would be invariant for changing tilt. In fact for small
angles the transverse motion of the field in the array was
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FIG. 3. Measured output intensity profile and simulated propa-
gation for a Gaussian excitation with several input tilts.
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found to be proportional to the initial tilt. But for grow-
ing angles this shift saturated and even reduced resulting
in an oscillatory dependence (see Fig. 4). Evidently, two
features of light propagation can be recognized; there is
a maximum angle of propagation that cannot be exceeded
and the width (strength of diffraction) varies with the input
angle.

Interesting to note, the output field returns to the ini-
tial waveguide if a phase difference of integer multiples of
p between adjacent waveguides is reached. For the cor-
responding initial beam tilt, the transverse motion of the
field in the array is steadily prevented by Bragg reflection
at the periodic array structure.

The theoretical analysis is based on a coupled mode
theory, where the complete field evolution is reduced to
that of the modal amplitudes an. The respective set of
evolution equations reads as [2]

i
d
dz

an�z� 1 C�an11�z� 1 an21�z�� � 0 , (1)

where a fast varying phase has been removed. Here z is the
direction of propagation and C is a measure of the linear
coupling between two waveguides amounting to C �
109 m21 for the polymer arrays used (see Fig. 1). The
initial condition an�z � 0� is determined by the overlap
of the exciting beam �Ein�x, y� with the modal profile
�En�x, y� of the respective guide [9]. The whole incident
field is mapped onto a finite number of mode amplitudes.
Therefore phase differences between adjacent guides of
multiples of 2p will have no effect on the field evolution.
Apart from a reduced incoupling efficiency, the response
of the array on initial tilts must be periodic as observed
in the experiment.

A formal solution of Eq. (1) can be obtained as

an�z� �
Z p

2p
dk ã�k� exp�ikn� exp�ib�k�z� , (2)

where k is the transverse wave number multiplied with the
waveguide spacing L. It is limited to the interval �2p, p�.
The individual Fourier components ã are determined by
the initial condition as

ã�k� �
1

2p

X
n

an�z � 0� exp�2ikn� . (3)
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FIG. 4. Measured output intensity profiles vs tilt of a Gaussian
input beam.
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For a given initial condition, the field evolution is com-
pletely controlled by the diffraction relation b�k�. It re-
lates the longitudinal to the transverse wave number and
determines how the individual Fourier components run out
of phase during propagation. Following Eq. (1) this rela-
tion reads as

b�k� � 2C cos�k� , (4)

being in strong contrast to the above discussed relation
for isotropic media. In the case of the array, it is strictly
periodic and can be regarded as a kind of band structure.

Because beams cover a few guides, the Fourier spectrum
is finite with a central wave number k0, which is fixed by
the tilt of the exciting beam. Hence, for convenience we
can use a Taylor expansion of the diffraction relation (4) as

b�k� � b�k0� 1 g�k 2 k0� 1
d

2
�k 2 k0�2, (5a)

g �
db

dk

Ç
k0

� 22C sin�k0� , (5b)

d �
d2b

dk2

Ç
k0

� 22C cos�k0� . (5c)

If we insert Eqs. (5) into the solution (2), we find that the
evolution can be formally described by a partial differential
equation:∑

i
≠

≠z
1 b�k0� 2 ig

≠

≠n
2

d

2
≠2

≠n2

∏
a0�n, z� � 0 , (6)

where n now appears as a continuous variable of the
distributed amplitude function a0�n, z� � an exp�2ik0n�.
Note that already Eq. (2) allows one to formally determine
amplitudes for noninteger values of n and therefore to
perform a continuous limit.

Applying the substitution n0 � n 1 gz, the first deriva-
tive in Eq. (6) disappears. This implies to term g a trans-
verse velocity. Moreover, Eqs. (5c) and (6) predict that
the parameter d determines the strength of diffraction;
therefore we can call it diffraction coefficient. The de-
pendence of these two quantities on the mean transverse
wave number k0 reflects the anomalies in refraction and
diffraction in an array. The most striking features are an
upper limit of the velocity gmax � 22C and diffraction-
less propagation �d � 0� at k0 � p�2. Evaluating the
experimental results, we can prove these features quan-
titatively (see Fig. 5). In contrast to isotropic materials,
diffractive spreading depends on the angle of incidence.
Given a Gaussian beam where the amplitude in its focus
is proportional to exp�2n2�W2

0 � (W0 � 2 in the experi-
ments) and the focus is situated a distance p away from
the entrance facet, the width W scaled to the waveguide
spacing L will evolve similar to [10]

W�z� � W0

s
1 1

µ
l

pW2
0 L2

p 2
2d

W2
0

z

∂2

. (7)
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FIG. 5. Diffraction relation (a), output position (b), and output
width (c) determined from the measurements in Fig. 4.

For the experiments reported above the focus was on the
input facet �p � 0�. In fact we find a good agreement
between theoretical predictions [Eqs. (5c) and (7)] and ex-
perimental measurements [see Fig. 5(c)]. Note that, for a
tilt of about 1.1±, corresponding to a phase difference of
k � p�2, the beam retains its original shape, i.e., diffrac-
tion is arrested as already observed in [8].

Interesting to note, the angle of diffractionless propaga-
tion is that of the maximum transverse velocity. It is the
same angle under which the two intensity maxima of the
single waveguide excitation disperse (see Fig. 2). Thus for
diffractionless propagation the energy transport across the
array is fastest.

The sign of the diffraction coefficient in Eq. (6) will
change if the tilt of the exciting beam exceeds the angle of
diffractionless propagation. But, according to Eq. (7) for
p � 0, this has no effect on the width of the beam. This is
reflected in the experiment by the similar output fields for
an initial phase difference of 0 and p between adjacent
guides [see Figs. 3(a) and 3(b)], where the slight differ-
ences are due to imperfections in the excitation with tilted
beams. The situation is analogous to the identical disper-
sive spreading of an unchirped temporal pulse regardless if
the medium exhibits a normal or an anomalous dispersion.
Thus only experiments using beams with initial phase cur-
vatures (chirp in the temporal case) can reveal a difference.
This curvature will either be compensated or increased by
diffraction, depending on the sign of the diffraction coeffi-
cient d. The phase front curvature was realized by moving
the focus either away from the input facet �p . 0� or into
the sample �p , 0�. In addition, the initial tilt was varied
to change the diffraction coefficient d.

Figure 6 shows the measured width of the output beam
versus the input tilt for five different curvatures of the ini-
tial phase front. Figure 6(c) resembles the measurement of
Fig. 5(c), where the focal plane coincides with the input
093901-3
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FIG. 6. Measured width of the output intensity profile vs input
beam tilt for different positions of the focal plane of a Gaussian
excitation.

facet giving a flat input phase. For Fig. 6(a) the focal
plane coincides with the output facet �p � 26.7 mm�.
Thus “conventional diffraction” (d , 0), which is found
for normal incidence, just leads to a maximal focusing of
the input beam by compensating the initial phase front cur-
vature. Tilting the beam and, consequently, decreasing and
eventually changing the sign of diffraction results in an in-
creased width of the output field. If the focal plane is in
the middle of the sample [see Fig. 6(b)], the initial curva-
ture is overcompensated for zero tilt. But slightly tilting
the beam and therefore reducing the diffraction coefficient
to half of its maximum value minimizes the output width.
A further tilt results again in an increased width of the
output beam. Moving the focal plane into the opposite
direction, i.e., away from the sample, shows a reversed be-
havior. In Fig. 6(e) the objective is moved about as much
away from the sample �p � 6.4 mm� as it was moved to-
wards the sample in Fig. 6(a) compared to the situation in
Fig. 6(c). Therefore the input beam has the same radius of
curvature at the input facet, but with opposite sign. As a re-
sult, the curvature is enhanced at zero tilt and compensated
for a phase difference of 6p between adjacent guides. A
comparison of Figs. 6(a) and 6(e) clearly reveals the influ-
ence of the sign of the diffraction coefficient d on beam
spreading. While in Fig. 6(a) the minimum output width
is achieved for d�k0 � 0� � 22C, it is accomplished for
093901-4
d�k0 � 6p� � 2C in Fig. 6(e). For a beam with a tilt
of k0 � 6p, diffractive spreading in air behind the beam
waist is canceled in the array by a diffraction of opposite
sign. Consequently, the beam waist is imaged onto the out-
put facet. Therefore, a tilted array can be used as a simple
imaging element.

In conclusion, we have studied the propagation of beams
in homogeneous waveguide arrays. It turned out that re-
fraction and diffraction exhibit strong anomalies as they
depend periodically on the initial beam tilt. In contrast
to isotropic systems, we found that the transverse en-
ergy transport cannot exceed a certain maximum velocity
and that diffractive spreading depends on the direction of
propagation; i.e., by varying the angle of incidence size
and sign of diffraction can be controlled and it can even be
arrested. Both effects are signatures of the diffraction rela-
tion of the array, which has been visualized experimentally.
For particular initial tilts, the array can undo beam spread-
ing (and phase curvature) accumulated upon propagation
in an isotropic medium. Therefore, a tilted waveguide ar-
ray can form a simple imaging system.
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