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The nuclear-recoil correction to the bound-electron g factor in H-like atoms is calculated to first order
in m�M and to all orders in aZ. The calculation is performed in the range Z � 1 100. A large
contribution of terms of order �aZ�5 and higher is found. Even for hydrogen, the higher-order correction
exceeds the �aZ�4 term, while for uranium it is above the leading �aZ�2 correction. As a result, one of
the main sources of the theoretical uncertainty for the bound-electron g factor is eliminated.
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Recent progress in high-precision measurements of the
bound-electron g factor for H-like carbon [1,2] and the re-
lated theoretical investigations [3–11] provide a new inde-
pendent determination of the electron mass. The accuracy
of this determination presented in [11] is 3 times better
than that of the accepted value for the electron mass [12].
This result can be improved if the theoretical and experi-
mental uncertainties for the g factor are reduced. From
the experimental side, an improvement of the accuracy by
an order of magnitude is anticipated in the near future, as
well as an extension of the measurements to higher-Z sys-
tems [13]. Investigations of the bound-electron g factor in
high-Z systems are of particular importance since they can
provide a new determination of the fine structure constant
[8,13], nuclear magnetic moments [13], and nuclear charge
radii. They would also create a good possibility for testing
the magnetic sector of QED in a strong Coulomb field. At
present, the theoretical uncertainty of the bound-electron
g factor in H-like ions is mainly determined by four fac-
tors: a numerical error in evaluation of the QED correction
of first order in a, an error caused by employing the aZ
expansion for the QED correction of second order in a, an
error resulting from the aZ expansion of the nuclear recoil
correction, and, for very heavy ions, an error due to the fi-
nite nuclear size correction. The main goal of this Letter
is to evaluate the nuclear-recoil correction to the 1s g fac-
tor to all orders in aZ and, therefore, to eliminate one of
the main sources of the uncertainty for the corresponding
theoretical predictions.

As is known [14], in the nonrelativistic limit the recoil
correction to the 1s g factor vanishes. The leading rela-
tivistic recoil correction is of order �aZ�2m�M and was
evaluated in [15,16] (see also [17], and references therein).
General formulas for the nuclear-recoil effect valid to all
orders in aZ were derived recently in [9]. These results
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were confirmed by Yelkhovsky [10] by employing a dif-
ferent method. In addition, Yelkhovsky presented some
arguments for the assertion that the recoil correction up to
order �aZ�4m�M is completely defined by the so-called
lower-order term (which was evaluated analytically in [9]
and re-derived in [10]). As a result, in [10] the total theo-
retical uncertainty for the g factor in C51 was reduced to
the level of 1.2 3 1029. This leads to improving the pre-
cision of the electron-mass determination by a factor of
2. In this Letter, we numerically evaluate the higher-order
contribution to the recoil correction to all orders in aZ.
Our results confirm the statement of [10] that the expan-
sion of this term starts with �aZ�5. However, we find that
the �aZ�5 behavior of the higher-order term is a result of a
cancellation of terms of order �aZ�3 and �aZ�4 (see a dis-
cussion below), while the argumentation of [10] does not
contain any indication of the appearance of such terms.
We also observe that for all H-like atoms in the range
Z � 1 100 the higher-order term exceeds the �aZ�4m�M
contribution. In particular, for the case of carbon this term
is about 5 times larger than the �aZ�4m�M term and by
a factor of 10 exceeds its estimation given in [10]. It is
caused by the fact that the �aZ�4m�M term has a numeri-
cally small coefficient while the higher-order term exhibits
the �aZ�5 log�aZ�m�M behavior with a numerically large
coefficient.

We consider a H-like atom with a spinless nucleus
that is put into the classical homogeneous magnetic field,
Acl�r� � �H 3 r��2. For simplicity, we assume that
H is directed along the z axis. The energy shift of a
state a to first order in H and to first order in m�M is
conveniently written as the sum of the lower-order and
the higher-order term [9,10], DE � DEL 1 DEH, where
�h̄ � c � 1, e , 0�
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Here, pk � 2i=k , n � r�r, V�r� � 2aZ�r is the
Coulomb potential of the nucleus, dV�x� � 2ea ?
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is the transverse part of the photon propagator in the
Coulomb gauge, G�v� �

P
n jn� �nj �v 2 ´n�1 2 i0��21

is the Dirac-Coulomb Green function, d´a � �ajdV ja�,
jda� �

P´nfi´a
n jn� �njdV ja� �´a 2 ´n�21, and a is a

vector incorporating the Dirac matrices. In Eq. (2),
the summation over the repeated indices �k � 1, 2, 3�,
which enumerate components of three-dimensional vec-
tors, is implicit. The recoil correction to the bound-
electron g factor is defined as Dg � DE��m0H mj�,
where m0 � jej��2m� is the Bohr magneton and mj

is the angular momentum projection of the state under
consideration.

For the 1s state, the analytical evaluation of the lower-
order term yields [9,10]

DgL �
m

M
�aZ�2 2

m

M

�aZ�4

3�1 1
p

1 2 �aZ�2�2
. (4)

The first term in the right-hand side of this equation re-
produces the result of [15,16], while the second term con-
tributes to order �aZ�4 and higher.
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The higher-order term, defined by equation Eq. (2), is
represented by the sum of the Coulomb, one-transverse-
photon, and two-transverse-photon contributions, DEH �
DECoul

H 1 DEtr1
H 1 DEtr2

H . The wave-function correction
jda� can be found analytically by the method of gen-
eralized virial relations for the Dirac equation [18].
The explicit form for the component of jda�, which
has the same angular quantum numbers as the refer-
ence state ja�, is presented in [9] (only this component
contributes to the effect under consideration). The
numerical evaluation of the expression (2) was car-
ried out similar to our previous calculations of the
nuclear-recoil correction to the Lamb shift [19–21]. After
integration over angles, the finite basis set method was
used to evaluate infinite summations over the electron
spectrum. Basis functions were constructed from B
splines by employing the procedure proposed in [22].
The integration over v was carried out analytically for
the Coulomb and one-transverse-photon contributions and
numerically for the two-transverse-photon contribution.
The number of B splines used in actual calculations
was varied from 70 to 110. The estimated uncertainty
corresponds to the dependence of the results on grid
parameters and the number of splines and integration
points.

The correction to the 1s g factor induced by the higher-
order term DEH is expressed in terms of the function
P�aZ�,
TABLE I. The higher-order recoil correction to the 1s g factor, expressed in terms of the function P�aZ� defined by Eq. (5).

Z PCoul Ptr1 Ptr2 P

1 21.11414 100.701(2) 280.8200�3� 18.769(2)
2 21.09754 53.5278(6) 236.98689 15.4434(6)
3 21.08183 37.44949(6) 222.80837 13.55928(6)
4 21.06693 29.24592(4) 215.91960 12.25940(4)
5 21.05277 24.23027(3) 211.90049 11.27702(3)
6 21.03931 20.82713(1) 29.29387 10.49395(1)
8 21.01429 16.47349 26.15902 9.30018(1)

10 20.99161 13.78331 24.37646 8.41524(1)
20 20.90647 8.09979 21.22907 5.96425(1)
30 20.85834 6.08456 20.41612 4.81010(1)
40 20.84048�1� 5.09672(1) 20.08937 4.16687(1)
50 20.85209�1� 4.58136(3) 0.07843 3.80770(3)
60 20.89803�3� 4.36161(3) 0.18668(1) 3.65025(4)
70 20.99173�9� 4.39148(9) 0.27839(1) 3.6781(1)
80 21.1647�1� 4.7153(3) 0.38378(3) 3.9344(3)
90 21.4962�9� 5.525(3) 0.5459(2) 4.575(3)

100 22.228�9� 7.48(3) 0.883(2) 6.14(3)
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DgH �
m
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The corresponding numerical results are presented in
Table I. It is noteworthy that the one-transverse-photon
contribution and the two-transverse-photon contribution
separately are of the order �aZ�4 for small Z, while
their sum exhibits the �aZ�5 behavior. This fact is
clearly demonstrated in Fig. 1, where the numerical
results for the ratio DgH���m�M� �aZ�4� are plotted.
We also note that the one-transverse-photon contribution
contains terms of order �aZ�3 which are cancelled when
added together. Namely, the part corresponding to the
perturbation of the reference state a and the part corre-
sponding to the perturbation of the electron propagator
exhibit the �aZ�3 behavior, when taken separately. We
note that, in contrast to our results, the argumentation
of [10], where the same gauge is considered, does not
indicate the appearance of terms of order lower than
�aZ�5. For this reason, we can not consider the argu-
mentation of Yelkhovsky, in the form it is given in [10],
as complete. Fitting our numerical results for small Z
to the form P�aZ� � C51 log�aZ� 1 C50 1 aZ�· · ·�
yields C51 � 25.3 6 0.5 and C50 � 26.5 6 1.0. The
uncertainties of the coefficients were estimated by ana-
lyzing the dependence of the results on the number of
parameters in the fit and the number of fitting points.

In Table II we present the ratios DgH�Dg0 and �DgL 2

Dg0��Dg0, where Dg0 � �aZ�2m�M is the lowest-order
correction derived in [15,16]. As can be seen from the
table, the DgH term exceeds �DgL 2 Dg0� for all Z in the
range Z � 1 100. In the case of carbon, DgH amounts to

 

 

 

 

∆
g
 /
[
(
 α
Z
)
 
 m
/
M
]
 
 
 
 

Nuclear charge number

FIG. 1. The Coulomb, one-transverse-photon, and two-trans-
verse-photon contributions to the ratio DgH���aZ�4m�M�.
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7.7 3 10211, which is 10 times larger than the uncertainty
ascribed to this term in [10]. However, since this correc-
tion is about 10 times smaller than the current theoretical
uncertainty due to the binding QED correction, it does not
affect the electron-mass prediction of [11]. The higher-
order recoil correction is more important for higher-Z sys-
tems, since it grows very rapidly when Z increases. In
particular, for uranium the higher-order recoil correction
is even above the �aZ�2m�M term.

In Table III we present the individual contributions
to the 1s g factor for some H-like ions in the range
Z � 6 92. An error ascribed to the Dirac point-nucleus
value results from the current uncertainty of the fine
structure constant, 1�a � 137.035 999 76�50� [12]. The
uncertainty of the finite nuclear size correction was
estimated as the difference between the result obtained
with the Fermi model of the nuclear charge distribution
and with the homogeneously charged sphere model.
The nuclear charge radii were taken from [23,24]. The
one-loop QED correction was taken from [4,5], where it
was evaluated numerically to all orders in aZ. The a2

QED correction includes the existing aZ expansion terms
for the QED correction of second order in a [7,8] and the
known free QED terms of higher orders in a (see, e.g.,
[6]). Its relative uncertainty was estimated as the ratio of
the part of the one-loop QED correction, that is beyond
the �aZ�2 approximation, to the part that is within the
�aZ�2 approximation. The recoil correction incorporates
the total recoil correction of first order in m�M, calculated
in this paper, and the known corrections of orders �m�M�2

and a�m�M� [17]. From the table, we conclude that for
low Z the theoretical uncertainty is mainly determined
by the numerical error of the one-loop QED correction
[5,6], while for high Z it results from the aZ expansion
of the a2 QED correction and from the finite nuclear
size correction. Calculations of the QED corrections up
to the desirable accuracy seem to be feasible in the near
future if we consider recent progress in calculations of the
corresponding corrections to the Lamb shift in H-like ions
[25,26]. As to the uncertainty due to the finite nuclear size

TABLE II. The recoil corrections to the 1s g factor, expressed
in terms of the leading correction, Dg0 � �aZ�2m�M . The
difference DgL 2 Dg0 is defined by the second term in Eq. (4)
and corresponds to the deviation of the lower-order term from
�aZ�2m�M . DgH is the higher-order term.

Z �DgL 2 Dg0��Dg0 DgH�Dg0

1 24.437732 3 1026 7.2935�8� 3 1026

2 21.775234 3 1025 4.8010�2� 3 1025

6 21.599074 3 1024 8.80823�1� 3 1024

10 24.449468 3 1024 3.27011�1� 3 1023

20 21.794206 3 1023 1.85414�1� 3 1022

30 24.092524 3 1023 5.04677�1� 3 1022

50 21.190031 3 1022 0.184956(2)
70 22.514919 3 1022 0.49025(2)
90 24.672903 3 1022 1.296(1)

100 26.261303 3 1022 2.39(1)
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TABLE III. The individual contributions to the 1s bound-electron g factor in H-like ions.

12C51 16O71 32S151 40Ar171 40Ca191

Dirac value (point) 1.998 721 354 4 1.997 726 003 1 1.990 880 058 3(1) 1.988 447 661 3(1) 1.985 723 203 8(1)
Fin. nucl. size 0.000 000 000 4 0.000 000 001 5 0.000 000 038 9 0.000 000 070 3 0.000 000 113 1(1)
QED, order �a�p� 0.002 323 663 7(9) 0.002 324 416(1) 0.002 330 920(3) 0.002 333 636(4) 0.002 336 92(1)
QED, order �a�p�2 20.000 003 516 2�2� 20.000 003 517 1�4� 20.000 003 523�4� 20.000 003 525�6� 20.000 003 528�9�
Recoil 0.000 000 087 6 0.000 000 117 0 0.000 000 236 0 0.000 000 239 8 0.000 000 297 1
Total 2.001 041 589 9(9) 2.000 047 021(1) 1.993 208 254(5) 1.990 778 082(8) 1.988 057 01(2)

52Cr 231 74Ge311 132Xe531 208Pb811 238U911

Dirac value (point) 1.979 392 224 9(2) 1.963 137 509 5(3) 1.892 114 650(1) 1.734 947 026(2) 1.654 846 173(3)
Fin. nucl. size 0.000 000 272 6(2) 0.000 001 231 2(10) 0.000 023 49(3) 0.000 453 3(9) 0.001 275 0(25)
QED, order �a�p� 0.002 345 02(1) 0.002 369 20(1) 0.002 505 26(1) 0.002 884 38(3) 0.003 088 93(3)
QED, order �a�p�2 20.000 003 533�16� 20.000 003 55�4� 20.000 003 61�19� 20.000 003 7�6� 20.000 003 8�9�
Recoil 0.000 000 332 4 0.000 000 426 5 0.000 000 783 5 0.000 001 723 0.000 002 491
Total 1.981 734 32(2) 1.965 504 82(4) 1.894 640 57(19) 1.738 282 7(11) 1.659 208 9(27)
effect, one may expect that, as in the case of the hyperfine
splitting [27], it can be significantly reduced in a specific
difference of the bound-electron g factor in H- and Li-like
ions.
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