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We show that a gauge singlet scalar S, with a coupling to the Higgs doublet of the form lSSySHyH
and with the S mass entirely generated by the Higgs expectation value, has a thermally generated relic
density VS � 0.3 if mS � �2.9 10.5� �VS�0.3�1�5�h�0.7�2�5 MeV. Remarkably, this is very similar to
the range �mS � �6.6 15.4�h2�3 MeV� required in order for the self-interaction �h�4� �SyS�2 to account
for self-interacting dark matter when h is not much smaller than 1. The corresponding coupling is lS �
�2.7 3 10210 3.6 3 1029� �VS�0.3�2�5�h�0.7�4�5, implying that such scalars are very weakly coupled
to the standard model sector.
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1. Introduction.— It has become apparent that conven-
tional collisionless cold dark matter (CCDM) may have
problems accounting for the observed structure of galax-
ies. N-body simulations with CCDM indicate that galaxies
should have singular halos [1,2] with large numbers of sub-
halos [3,4]. Observationally, the density profile of galaxies
in the inner few kiloparsecs appears to be much shallower
than predicted by numerical simulations (the central den-
sity of dark matter halos being 50 times smaller than the
CCDM prediction for dwarf galaxies and roughly indepen-
dent of halo mass [2,5]), while the number of dwarf galax-
ies in the local group is an order of magnitude fewer than
predicted [3,4]. In addition, the CCDM predictions for
the Tully-Fisher relation [6,7] and the stability of galac-
tic bars in high surface brightness spiral galaxies [8] are
not in agreement with what is observed, indicating lower
density galaxy cores than predicted by CCDM. Although
there is at present considerable uncertainty regarding the
interpretation of observations and simulations [9,10], it has
nevertheless been argued that all the discrepancies between
observations and simulations may be understood as indi-
cating that dark matter halos in CCDM simulations are
more centrally concentrated than observed [11].

In order to overcome the possible deficiencies of CCDM
halos, one suggestion has been that the cold dark mat-
ter particles have a nondissipative self-interaction [12,13],
and it has been shown that such cold, nondissipative self-
interacting dark matter (SIDM) can be effective in alle-
viating the various problems of CCDM [11]. Scattering
of dark matter particles stops gravitational accretion at the
center of the halo and so allows a smooth core to form.
Simulations with SIDM [11,14] are able to simultaneously
account for the observed density profiles of galactic ha-
los and the number of subhalos [11]. In the future SIDM
may be strongly constrained by gravitational lensing ob-
servations of the shape of cluster halos [15–17] and by the
formation of massive black holes at the centers of galax-
ies, which is enhanced by self-interactions of dark matter
particles [18].

In order to be able to account for the observed properties
of dark matter halos, the requirement on the mass M and
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self-interaction scattering cross section s of the SIDM
particles is that [13]

rS �
s

M
� �2.05 3 103 2.57 3 104� GeV23. (1)

The upper bound corresponds to the limit at which galaxy
halos in massive clusters are destroyed by interacting with
hot particles in the cluster halo (evaporation) [13], while
the lower bound corresponds to the limit where the SIDM
particle would not interact within a typical galactic halo
during a Hubble time [12,13].

The canonically simplest dark matter particle is arguably
a gauge singlet scalar S. The possibility that gauge singlet
scalars, interacting with the standard model sector via a
coupling to the Higgs doublet of the form SySHyH, could
naturally constitute dark matter has been pointed out by
a number of authors in the past [19,20] as well as more
recently [21]. These calculations consider the case of mas-
sive �.1 GeV� scalars which freeze out of thermal equi-
librium when nonrelativistic [22]. However, the range of
S masses considered is too large to account for SIDM with
perturbative S couplings.

It has recently been noted that gauge singlet scalars have
a natural self-interaction via an S4-type coupling and so in
principle could account for SIDM [23–25]. An estimate
of the upper bound on the coupling of S scalars to the
Higgs doublets for S mass of the order of 10 100 MeV
(which is of the greatest interest in the case of perturbative
S self-interactions) was derived in [24] by requiring that
S scalars do not come into thermal equilibrium and so
overpopulate the Universe.

In this Letter we consider thermal generation of SIDM
S scalars which do not achieve equilibrium. We will show
that such nonequilibrium thermal generation can naturally
account for a dark matter density of S scalars with the right
properties to account for SIDM.

The Letter is organized as follows. In Section 2 we dis-
cuss the perturbative upper limit on the S scalar mass. In
Section 3 we consider the thermal generation of a relic
density of S scalars. In Section 4 we consider the case of
zero bare S mass and the resulting consistency of the relic
© 2002 The American Physical Society 091304-1
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density, S mass, and Spergel-Steinhardt SIDM cross sec-
tion for natural values of the S self-coupling. In Section 5
we present our conclusions.

2. Limit on mS for perturbative SIDM.—We first con-
sider the perturbative upper limit on the S mass if it is to
play the role of SIDM. We will consider the case of com-
plex gauge singlet scalars for consistency with the cross
sections and discussion given in [20], which we will use
here. We expect that the results for real scalars will be
very similar. The model is described by

L � ≠mSy≠mS 2 m2SyS 2 lSSySHyH 2
h

4
�SyS�2.

(2)

The total center-of-mass S scattering cross section is the
sum of SSy ! SSy and SS ! SS,

s � sSSy!SSy 1 sSS!SS �
3h2

128pm2
S

. (3)

Therefore

rS �
s

mS
�

3h2

128pm3
S

, (4)

which implies that

mS � 35.8a1�3
h

µ
2.05 3 103 GeV23

rS

∂1�3

MeV , (5)

where ah � h2�4p. (Similar expressions have been ob-
tained in [24,25].) Thus if we require that ah & 1 in order
to have a perturbative theory, then the condition Eq. (1) re-
quires that mS � a1�3

h �15.4 35.8� MeV & 30 MeV. (We
refer to this as the Spergel-Steinhardt mass range.) We note
that this puts a severe bound on the coupling lS , since the
S scalar gains a mass from the Higgs expectation value,

m2
S � m2 1

lSy2

2
, (6)

where y � 250 GeV. Thus the requirement that mS &
30 MeV imposes an upper bound on lS ,

lS , 2.9 3 1028
µ

mS

30 MeV

∂2

. (7)

The Spergel-Steinhardt mass range assumes a perturba-
tive S self-coupling. A nonperturbative self-coupling
may be possible, but it would be difficult to calculate
the properties of such a model, so we must restrict
ourselves to the perturbative case. In addition, the
only known scalar self-coupling, that of the stan-
dard model Higgs doublet, lH �HyH�2, is given by
lH � m2

h�4y2 � 0.053�mh�115 GeV�2. (The experi-
mental lower bound on the Higgs mass is mh . 113 GeV
[26], while an upper bound for the pure standard model
is obtained from radiative corrections to electroweak
observables, mh , 165 GeV [27]. The upper bound in
extensions of the standard model can be 1 TeV or larger
[28].) This is typically perturbative but not very much
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smaller than 1, suggesting that a natural value for the S
scalar self-couplings is around 0.1.

2. Thermal generation of S scalars.—There are two
processes which can produce a density of S scalars: 2 $ 2
annihilation processes and decay of a thermal equilibrium
density of Higgs scalars to SSy pairs, ho ! SSy. We
first consider 2 $ 2 annihilations. The relic density from
scattering processes in a radiation dominated Universe is
found by solving the Boltzmann equation [20,22],

df

dT
�

�sannyrel	
K

�f2 2 f2
0 �; K �

∑
4p3g�T �
45M2

Pl

∏1�2

,

(8)

where f � nS�T3, f0 � n0�T3, and g�T� � gB 1 7gF�
8, where gB and gF denote the number of relativistic
bosonic and fermionic degrees of freedom, respectively.
nS is the number density of S scalars and n0 is the thermal
equilibrium S number density; for relativistic S scalars

n0 �

µ
1.2
p2

∂
T3. (9)

We consider the case where the S scalar density is very
small compared with the equilibrium density and solve the
Boltzmann equation with f � 0 on the right-hand side,

df

dT
� 2

�sannyrel	
K

f2
0 . (10)

We take the Universe to be initially at a high temperature,
T ¿ mW , and calculate the resulting relic density of S
scalars as the Universe cools. The annihilation cross sec-
tions of relativistic SSy pairs to t quarks, W and Z bosons,
and the h0 Higgs scalars (lighter quarks and leptons do
not contribute significantly due to their very small Yukawa
couplings) are estimated by using the center-of-mass anni-
hilation cross sections calculated for S scalars with typical
energy ET � T . We will see that the core results of the
paper are not very sensitive to uncertainties in the calcu-
lation of the annihilation cross section and thermal relic
S density. The relativistic annihilation cross sections si

may be obtained from the nonrelativistic �sannyrel	 given
in [20] via the relation si � �1�2� �sannyrel	 �mS ! ET �
(where i � t, W ,Z, h0 denotes the standard model particle
in question), which may be confirmed by directly calculat-
ing the cross sections. For T , mi the contribution of
si to the total cross section is zero, which models Boltz-
mann suppression. Then �siyrel	 � 2si, where we take
yrel � 2 for relativistic annihilations [29]. For relativistic
S scalars, f0 � 1.2�p2 is a constant so Eq. (10) can be
integrated as

fi � 22f2
0

Z ETf

ET0

dET
si

K
, (11)

where ET � T , ETf � mi, and the initial thermal energy
ET0 ! `. We will take K ~ g�T�1�2 to be constant with
g�T� � g�Ti�, where Ti � mi , since most of the integral
comes from ET close to mi. The total contribution to f
is then
091304-2
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fT �
X

fi � 1.3 3 1012l2
S

∑
1 1 0.27

µ
115 GeV

mh

∂

1 0.20

µ
mh

115 GeV

∂2∏
.

(12)

In this we have taken g�Ti� � 106.75, corresponding to
the standard model degrees of freedom and lt � 0.7 (cor-
responding to mt � 175 GeV). In addition, in order to
obtain an analytical result we have expanded the Higgs
propagators in si�i � W , Z, t� assuming that 4E2

T is large
compared with m2

h, which is generally satisfied if m2
h is

small compared with 4m2
W . (We refer to this as the small

Higgs mass limit.)
The S number density from the decay of thermal equi-

librium h0 scalars at temperatures less than the electroweak
phase transition (where TEW * 1.5mh [30]) is given by

dnS

dt
1 3HnS � �Gh0	nh0eq , (13)

where H is the expansion rate and the thermal equilibrium
density of h0, nh0eq, is given by

nh0eq �
1

2p2

Z `

mh

E�E2 2 m2
h�1�2

�eE�T 2 1�
dE , (14)

and the decay rate for h0 scalars with energy E is

Gh0 �
l

2
Sy2

16pE
. (15)

Thus the thermal average of the decay rate is

�Gh0	 �
1

nh0eq

l
2
Sy2T2e2mh�Th�mh�T�

32p3 ;

h�a� �
Z `

0

t1�2�t 1 2a�1�2

�et 2 e2a�
dt . (16)

Therefore in terms of f, the S density from h0 decays is
given by

df

dT
� 2

�Gh0	fh0eq

KT3 � 2
h�mh�T�

KT4

l
2
Sy2e2mh�T

32p3 . (17)

h�a� is a slowly varying function of a, with h�0� � 1.64,
h�1� � 1.87, and h�5� � 3.00. Since most of the contri-
bution to f comes from mh�T 
 1, we take h�mh�T� to
be equal to h�1�, in order to obtain an analytical expres-
sion. Therefore the density of S scalars from h0 decay,
fdec, is given by

fdec �
l

2
Sy2h�1�

16p3Km3
h

� 1.08 3 1014l2
S

µ
115 GeV

mh

∂3

. (18)

In this we have assumed that y is given by its T � 0 value,
y � 250 GeV. Since most of the contribution to fdec
comes from T & mh , TEW, this should be a reasonable
approximation. We see that the S density from h0 decays
is generally much larger than that from 2 $ 2 annihilation
processes in the small Higgs mass limit. For larger values
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of the Higgs mass, it is possible that s-channel pole anni-
hilations [29] may result in 2 $ 2 processes dominating
the h0 decays [31], in which case fdec is a lower bound on
the number of S scalars produced thermally.

The resulting density of S plus Sy scalars is then the
sum of scattering and decay contributions,

VS �
2mS

rc
g�Tg�T3

g

X fi

g�Ti�
, (19)

where rc � 7.5 3 10247h2 GeV4 is the critical density,
Tg � 2.4 3 1024 eV is the present photon temperature,
Ti � mi , and g�Tg � � 2. In this we have used the fact
that the S number density to entropy is conserved once the
scattering and decay processes are Boltzmann suppressed,
such that g�T�nS�T3 is constant. Therefore with f �
fdec and g�Ti� � 106.75 for Ti � mh, the thermal relic
S density VS is related to lS by

lS � 2.0 3 10210 h

h1�3

µ
VS

0.3

∂1�2

3

µ
10h2�3 MeV

mS

∂1�2µ
mh

115 GeV

∂3�2

. (20)

Thus, for Higgs masses in the range 115 GeV to 1 TeV
and with expansion rate h � 0.7, the upper bound on
lS from requiring that VS & 0.3 is in the range �1.4 3

10210 3.6 3 1029�h21�3. This is in broad agreement
with the upper bound estimated in [24], based on the
weaker condition that the S scalars do not come into ther-
mal equilibrium. More importantly, we see that it is pos-
sible to generate a thermal relic density with VS � 0.3 and
mS � 10 MeV (typical of SIDM scalars) purely within
the minimal gauge singlet scalar extension of the stan-
dard model.

4. Naturally consistent thermal relic SIDM for zero bare
mass.—The value of lS from requiring that VS � 0.3
is satisfied is not very much smaller than the upper limit
Eq. (7) from the requirement that the Higgs expectation
value contribution to the S mass is compatible with pertur-
bative SIDM S scalars. This suggests that it is quite likely
that all the S mass might come from its interaction with
the Higgs scalar when its relic density is sufficient to ac-
count for dark matter. If we assume that all the S mass is
due to the Higgs expectation value, then we find that the
S mass is fixed by the thermal relic density

mS � 2.9

µ
VS

0.3

∂1�5µ
h

0.7

∂2�5µ
mh

115 GeV

∂3�5

MeV . (21)

We refer to this as the thermal relic S mass. Comparing
with the Spergel-Steinhardt range for SIDM,

mS � �6.6 15.4�h2�3 MeV , (22)

we see that the thermal relic mass for S scalars is within the
range required to account for SIDM when the self-coupling
constant h is equal to about 0.1, a natural value which
is consistent with the Higgs doublet self-coupling in the
standard model. The thermal relic mass is not strongly de-
pendent upon cosmological parameters, nor is it strongly
091304-3
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dependent upon the Higgs mass. In particular, it is rela-
tively insensitive to uncertainties in the calculation of f,
since a change in f by a factor d produces a change in VS

by the same factor, and so a change in the thermal relic
mass by d1�5. The coupling corresponding to the thermal
relic mass is

lS � 2.7 3 10210
µ

VS

0.3

∂2�5µ
h

0.7

∂4�5µ
mh

115 GeV

∂6�5

.

(23)

This suggests a scenario for dark matter in which stable
gauge singlet scalars couple very weakly to the standard
model sector but self-couple with a relatively strong
coupling of about 0.1, of the order expected from the
example of the standard model Higgs self-coupling.

5. Conclusions.—We have considered the thermal gen-
eration of a relic density of SIDM gauge singlet scalars.
The dominant process for small Higgs mass is the decay
of thermal equilibrium Higgs scalars to gauge singlet scalar
pairs. For SIDM scalars with perturbative self-interactions,
the mass must be no greater than around 30 MeV. For
such light scalars, the requirement of an acceptable relic
density of S scalars requires that the S coupling to the
standard model Higgs satisfies lS & 102�9 10�. This limit
comes from the requirement that S scalars are not ther-
mally overproduced, which is a stronger condition than
requiring that they do not come into thermal equilibrium.

In the case where S scalars account for dark matter and
where the S mass is entirely due to the Higgs expectation
value, we find that the S mass is fixed by the thermal relic
dark matter density to be between about 2.9 and 10.5 MeV
for Higgs masses ranging from 115 GeV to 1 TeV. (The
upper limit on the S mass may be smaller if 2 $ 2 annihi-
lations dominate h0 decays for large Higgs mass.) This is
very similar to the range of masses ��6.6 15.4�h2�3 MeV�
required by self-interacting dark matter with self-coupling
h of the order of the natural value (based on compari-
son with the standard model Higgs doublet self-coupling)
of around 0.1. This result is not strongly sensitive to un-
certainties either in the cosmological parameters or in the
calculation of the thermal relic S density. We find this co-
incidence remarkable and a possible hint that light gauge
singlet scalars with very weak coupling to the standard
model sector may play an important role in cosmology and
particle physics.
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