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We show through Monte Carlo simulations that the Alcock-Paczyński test, as applied to quasar clus-
tering, is a powerful tool to probe the cosmological density and equation of state parameters Vm0, Vx0 ,
and w. By taking into account the effect of peculiar velocities upon the correlation function we obtain
for the Two-Degree Field QSO Redshift Survey the predicted confidence contours for the cosmological
constant �w � 21� and spatially flat �Vm0 1 Vx0 � 1� cases. For w � 21, the test is especially sen-
sitive to the difference Vm0 2 VL0, thus being ideal to combine with cosmic microwave background
results. For the flat case, it is competitive with future supernova and galaxy number count tests, besides
being complementary to them.
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Introduction.—Recent investigations of type Ia super-
novae (SNe Ia) suggest that the expansion of the Universe
is accelerating, driven by some kind of negative-pressure
dark energy [1,2]. Independent evidence for the SNe Ia
results is provided by observations of cosmic microwave
background (CMB) anisotropies in combination with con-
straints on the matter density parameter �Vm0� [3]. The
exact nature, however, of this dark energy is not well un-
derstood at present. Vacuum energy or a cosmological
constant �L� is the simplest explanation, but attractive al-
ternatives like a dynamical scalar field (quintessence) [4]
have also been explored in the literature. An important task
nowadays in cosmology is thus to find new methods that
could directly quantify the amount of dark energy present
in the Universe as well as determine its equation of state
and time dependence. New methods may constrain differ-
ent regions of the parameter space and are usually subject
to different systematic errors, and they are therefore cru-
cial to cross-check (or complement) the SNe results.

The test we focus on here is the one suggested by Al-
cock and Paczyński (hereafter AP) [5], which has attracted
a lot of attention during the last few years [6–10]. In
particular, Popowski, Weinberg, Ryden, and Osmer [11]
(hereafter PWRO) extended a calculation by Phillips [12]
of the geometrical distortion of the QSO correlation func-
tion. They suggested a simple Monte Carlo experiment
to see what constraints should be expected from the Two-
Degree Field QSO Redshift Survey (2QZ) and the Sloan
Digital Sky Survey (SDSS). However, they did not esti-
mate the probability density in the parameter space and, as
0031-9007�02�88(9)�091302(4)$20.00
a consequence, they could not notice that the test is in fact
very sensitive to the difference Vm0 2 VL0. Further, they
did not take into account the effect of peculiar velocities,
although they discussed its role arguing that it would not
overwhelm the geometric signal.

Our aim, in this Letter, is to show the feasibility of red-
shift distortion (geometric 1 peculiar velocity) measure-
ments to constrain cosmological parameters, by extending
the PWRO Monte Carlo experiments and obtaining confi-
dence regions in the �Vm0, VL0� and �Vm0, w� planes. We
compare the expected constraints from the AP test, when
applied to the 2QZ survey, with those obtained by other
methods. We include a general dark energy component
with equation of state Px � wrx , with w constant. Our
analysis can be generalized to dynamical scalar field cos-
mologies, as well as to any model with redshift dependent
equation of state. Since most quasars have redshift z & 2
we expect the test to be useful in the determination of a
possible redshift dependence of the equation of state. We
explicitly take into account the effect of large-scale coher-
ent peculiar velocities. Our calculations are based on the
measured 2QZ distribution function and we consider best
fit values for the amplitude �r0� and exponent �g� of the
correlation function as obtained by Croom et al. [13]. In
this work, we consider only the 2QZ survey although the
results can easily be generalized to SDSS.

Alcock-Paczyński test and quasar clustering.—We
assume that the geometry is described by the standard
Robertson-Walker metric. By a straightforward calcula-
tion for null geodesics, we obtain the radial coordinate R
as a function of z:
a0R � g�z� :�

8<
:

sinh�
p

Vk0 I�z����H0
p

Vk0 �, Vk0 . 0 ,
I�z�, Vk0 � 0 ,
sin�

p
2Vk0 I�z����H0

p
2Vk0 �, Vk0 , 0 ,

(1)
where a0 is the present scale factor, I�z� :�Rz
z0�0�H0�H�z0�� dz0, and the Hubble parameter is given

by H�z� � H0�Vm0�1 1 z�3 1 Vx0�1 1 z�3�11w� 1

Vk0�1 1 z�2�1�2.
Given two close point sources (e.g., quasars), with coor-
dinates �z, u, f� and �z 1 dz,u 1 du, f 1 df�, directly
read off a catalog, the real-space infinitesimal comoving
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distance between them can be decomposed, in the distant
observer approximation we adopt, into contributions par-
allel and perpendicular to the line of sight, r� :� g�z�da,
rk :� dz�H�z�, such that r2 � r2

k 1 r2
�. Here, da is the

small angle between the lines of sight.
The gist of the AP test relies then on the fact that, if we

observe an intrinsically spherical system �rk � r��, it will
appear distorted, in redshift space, according to the generic
formula r��rk � j�z�s��sk, where the anisotropy or dis-
tortion function j�z� is defined by j�z� :� g�z�H�z��z.
Here we have assumed a Euclidean geometry for redshift
space, that is, sk :� dz, s� :� zda, and s2 � s2

k 1 s2
�.

Observations [13] suggest that, on scales
��1 40�h21 Mpc, the real-space correlation function
091302-2
for quasars is reasonably well fitted by a power law,
j�r� � �r�r0�2g , which leads, in redshift space, to an
anisotropic correlation function, j�s, m� � �s�s0�z��2g 3
�m2 1 j2�z� �1 2 m2��2g�2, where m :� sk�s and
s0�z� :� r0H�z�.

Peculiar velocities also induce distortions in the corre-
lation function which can be confused with those arising
from the cosmological geometric effect. It is important to
take them into account when comparing theory with ob-
servations. For the �z, s� range we consider, the influence
of small-scale velocity dispersions is likely to be weak
[11] and we neglect it in our analysis. The most rele-
vant effect to be considered is due to large-scale coherent
flows [14]. The linear theory correlation function is given
by [8,15]
jL�s, m� �

∑µ
1 1

2b

3
1

b2
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∏
j�r� , (2)
where the Pi�m� are Legendre polynomials, and m :�
rk�r. As usual, b�z� :� f�z��b�z�, f�z� :� 2d lnD�
d ln�1 1 z� is the linear growth rate, and we adopt the
following dependence for the bias parameter: b�z� � 1 1
�D�z � 0��D�z��m�b0 2 1�. If m � 1, we have Fry’s
number-conserving bias model [16]. The case m � 0
corresponds to a constant bias, and we also use m � 1.7
in our computations, which seems to be more in accor-
dance with an observed nonevolving clustering [13]. For
models where the dark energy is a cosmological constant
�w � 21�, we use the Heath solution for the growing
mode [17], D�z� � 5

2 Vm0H�z�
R`

z �1 1 x��H�x�3 dx, and
the following approximation for the growth rate [18]:
f�z� � V

4�7
m �z� 1

1
70VL�z� �1 1 Vm�z��2�. For flat

models, Silveira and Waga [19] obtained an exact solu-
tion for the growing mode, D�z� � 2F1�2 1

3w , w21
2 , 1 2

5
6w ; 12Vm0

Vm0
�1 1 z�3w ���1 1 z�, where 2F1�a, b, c; x � is

the hypergeometric function. The growth rate can also be
expressed in terms of hypergeometric functions.

Following PWRO, we obtain, for the number of pairs
expected in an infinitely small bin within �z, s, m� and
�z 1 dz, s 1 ds, m 1 dm�,

dNpairs � 2
2p

A

µ
180NQF�z�

pz

∂2

3 �1 1 jL�s,m��s2dz ds dm . (3)

Here A is the area (in deg2) of the survey, NQ is the total
number of sources (quasars) in the survey, and F�z� is the
normalized distribution function.

Croom et al. [13], assuming an Einstein–de Sitter (EdS)
universe �Vm � 1, VL � 0�, showed that the quasar clus-
tering amplitude r0 appears to vary very little over the
entire redshift range of the 2QZ survey. They found r0 �
4h21 Mpc as their best fit, which remains nearly constant
in comoving coordinate. Therefore, we have s0jEdS�z� :�
H�z�jEdSr0 � �4�3000� �1 1 z�3�2. Following again
PWRO, we use the fact that the total number of correlated
pairs, Npairs, in the survey is model independent to scale
s0�z� to other cosmologies. It is straightforward to show
that Npairs ~ s3

0�z��j2�z�, and we use s0�z� � �4�3000� 3

�1 1 z�3�2� j�z��jjEdS�z��2�3 as a fiducial redshift-space
correlation length for our simulations.

A particular model predicts a number of pairs Ai in each
bin of a �z, s, m� space. In a real (or simulated) situation the
data consist of Ni pairs in i bins. PWRO showed that for
typical surveys, such as SDSS and 2QZ, we are bound to
be in the “sparse regime” or “Poisson limit.” In this case
we may treat bins in �z, s, m� space as independent and
the probability of detecting Ni pairs in bin i, when Ai are
expected, is P�Ni jAi� � e2Ai A

Ni
i �Ni . Since the bins are

independent, the likelihood L of obtaining the data given
the model is simply the product L �

Q
i P�Ni jAi�. For

a typical 2QZ simulation, we assumed (i) the completed
survey will comprise NQ � 26 000 quasars in a total area
A � 750 deg2; (ii) the Einstein–de Sitter fiducial correla-
tion function has r0 � 4h21 Mpc and g � 1.6; (iii) the
bias model is determined by b0 � 1.5 and m � 1. The
linear binning we chose covered the ranges 0.4 , z ,
2.6, 2 , s�s0�z� , 7, and 0 , m , 1, with 16 bins in z,
25 in s�s0�z�, and 5 in m, making up a total of 2000 bins.
The maximization of the likelihood was carried out with
MINUIT [20] and cross-checked with MATHEMATICA. The
probability density function was built via a Gaussian kernel
density estimate, from typically 1000 runs for each “true”
model.

Results and discussion.— In Fig. 1, we show the pre-
dicted AP likelihood contours in the �Vm0, VL0� plane for
the 2QZ survey (solid lines), in the case w � 21, in a uni-
verse with arbitrary spatial curvature. The scattered points
represent maximum likelihood best fit values for Vm0 and
VL0. The assumed true values are �Vm0 � 0.3, VL0 � 0�
and �0.28, 0.72�, for the top and bottom panels, respec-
tively. In the top panel the displayed curve corresponds
to the predicted 2s likelihood contour. In the bottom
panel the predicted 1s contour (dashed line) for one year
091302-2
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FIG. 1. Simulated models at fixed w � 21 and correspond-
ing predicted AP confidence contours (solid lines). In the top
panel we show the predicted 2s likelihood contour assuming
a true model �Vm0 � 0.3, VL0 � 0�. In the bottom panel the
predicted 1s contour (dashed line) for one year of SNAP data
[21] is displayed, together with the predicted 1s AP contour.
For both tests we consider Vm0 � 0.28 and VL0 � 0.72; also
displayed is the 1s confidence contour obtained by the Super-
nova Cosmology Project (dotted lines, [2]).

of SNAP (Supernova/Acceleration Probe) data [21] is dis-
played, together with the predicted 1s AP contour. For
the SNAP contour, it is assumed that the intercept M is
exactly known. To have some ground of comparison with
current SNe Ia observations, in the same panel, we also
plot (dotted lines) the Supernova Cosmology Project [2]
1s contour (fit C). As expected, in both cases, the test re-
covers nicely the true values. We stress that the test is very
sensitive to the difference Vm0 2 VL0. From the bottom
panel we note that the sensitivity to this difference is com-
parable to that expected from SNAP, of the order 60.01.
Comparatively, however, the test has a larger uncertainty
in the determination of Vm0 1 VL0, of the order 60.21.
The degeneracy in Vm0 1 VL0 may be broken if we com-
bine the estimated results for the AP test with, for instance,
those from CMB anisotropy measurements, whose contour
lines are orthogonal to those exhibited in the panels [22].

In order to estimate the consequences of neglecting the
effect of linear peculiar velocities, in the top panel of
Fig. 2, we included them in the calculation of the Ai val-
ues but neglected them in the computation of the maxi-
mum likelihood; in this panel, we assume Vm0 � 0.3 and
VL0 � 0 as true values. Notice that the point with the true
Vm0 and VL0 values is outside the 2s contour. The neces-
sity of taking this effect into consideration when analyzing
real data, therefore, is clear.
091302-3
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FIG. 2. Simulated models at fixed w � 21 and corresponding
2s predicted AP confidence contour; in both panels, the true
model is indicated by a solid dot. Top panel: The true model,
�0.3, 0�, takes into account the effect of peculiar velocities, but
the simulated ones do not. Notice that the true model does
not fall into the 2s confidence region. Bottom panel: The
true model, �0.3, 0.7�, uses a redshift dependent bias function
with b0 � 1.45 and m � 1.68, whereas the simulated ones use
a constant bias equal to 2.46.

To illustrate that the AP test is in fact more sensitive to
the mean amplitude of the bias rather than to its exact red-
shift dependence, we plot, in the bottom panel of Fig. 2,
the 2s contour line, assuming as true values Vm0 � 0.3
and VL0 � 0.7. For this panel, the true Ai values were
generated assuming b0 � 1.45 and m � 1.68. However,
for the simulations, we considered a constant bias �m � 0�,
such that b0,sim :�

Rzmax

z�zmin
F�z�btrue�z� dz � 2.46. We re-

mark that the contour is slightly enlarged and shifted in the
direction of the “ellipsis” major axis. However, the uncer-
tainty in Vm0 2 VL0 is practically unaltered, confirming
the strength of the test [23]. We did the same analysis
assuming Vm0 � 1 and VL0 � 0 and obtained similar
results.

In Fig. 3, we show the predicted AP likelihood contours
in the �Vm0, w� plane for the 2QZ survey (solid lines)
for flat models �Vk0 � 0�. The true values are �Vm0 �
0.28, w � 21� and �Vm0 � 0.3, w � 20.7� for the top
and bottom panels, respectively. In the top panel, we show,
besides the AP contour, the predicted contour for one year
of SNAP data (dashed line, [21]), both at the 1s level. For
the SNAP contour, the intercept M is assumed to be ex-
actly known. Notice that the contours are somewhat com-
plementary and are similar in strength. In the bottom panel,
we compare the predicted 95% confidence contour of the
AP test with the same confidence contour for the number
091302-3
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FIG. 3. Simulated flat models and corresponding predicted AP
confidence contours (solid lines). The top panel is from a true
model �Vm0 � 0.28, w � 21� and displays the predicted con-
fidence contours for the AP test and the SNAP mission (dashed
line, [21]), both at the 1s level. The bottom panel is from a true
model �Vm0 � 0.3, w � 20.7� and displays the predicted con-
fidence contours for the AP test and the DEEP survey (dashed
line, [24]), both at the 95% level.

count test as expected from the DEEP (Deep Extragalac-
tic Evolutionary Probe) redshift survey (dashed line, [24]).
Again the contours are complementary, but the uncertain-
ties on Vm0 and w for the AP test are quite smaller.

In summary, we have shown that the Alcock-Paczyński
test applied to the 2QZ is a potent tool for measuring cos-
mological parameters. We stress that the test is especially
sensitive to Vm0 2 VL0. We have established that the ex-
pected confidence contours are in general complementary
to those obtained by other methods and we again empha-
size the importance of combining them to constrain even
more the parameter space. We have also revealed that, for
flat models, the estimated constraints are similar in strength
to those from SNAP with the advantage that the 2QZ sur-
vey will soon be completed.

Of course our analysis can be improved in several as-
pects. For instance, for the fiducial Einstein–de Sitter
model, we have assumed that g and r0 do not depend on
redshift. In fact, observations [13] seem to support these
assumptions, but further investigations are necessary. Fur-
ther, in the simulations, for Figs. 1 and 3, we have assumed
that the parameters r0, g, b0, and m are known exactly;
that is, they are the same as the true input ones. Marginal-
ization over these parameters is expected to increase the
size of the contours. However, preliminary results where
the errors in r0 and g are taken into account (supposed
091302-4
Gaussian) show that the confidence contours are not ap-
preciably altered. At present, the quasar clustering bias
is not completely well understood. Theoretical as well as
observational progress in its determination will certainly
improve the real capacity of the test. However, confirming
previous investigations [23], we have found that the test is,
in fact, more sensitive to the mean amplitude of the bias
rather than to its exact redshift dependence. A more ex-
tensive report of this work and further investigations will
be published elsewhere.
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