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String propagation on a cone with deficit angle 2p�1 2
1
N � is considered for the purpose of computing

the entropy of a large mass black hole. The entropy computed using the recent results on condensation of
twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking
entropy.
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Introduction.—The statistical interpretation of
Bekenstein-Hawking entropy of a black hole remains an
outstanding problem in quantum gravity. For a black hole
in d spacetime dimensions, the entropy S is given by a
universal formula

S �
A

4G
(1)

that depends only on the area A of the event horizon and
the d-dimensional Newton’s constant G. Thermodynami-
cally, this entropy behaves in every respect like ordinary
entropy and unites the second law of thermodynamics with
the area theorems of classical general relativity into an ele-
gant generalized second law [1,2]. These beautiful results
demand that, like any other entropy, the black hole entropy
also must have a statistical interpretation in terms of un-
derlying microstates.

Recent progress in string theory has shown that this is
indeed true for a large class of supersymmetric black holes.
The microstates of these special black holes are precisely
countable and can completely account for their entropy
[3,4]. These striking results can be extended to near-
extremal black holes as well as to certain nonsupersym-
metric charged black holes. At present, however, these
methods cannot be applied to the more general case of a
nonsupersymmetric neutral black hole.

We will address the problem of microstates of a
Schwarzschild black hole from a very different perspec-
tive based on earlier ideas of ’t Hooft [5], Susskind [6],
and others [7–10]. ’t Hooft [5] has advocated that the
thermal entropy of the heat bath seen by a Schwarzschild
observer should account for the Bekenstein-Hawking
entropy. This would then offer the desired statistical
interpretation of the entropy in terms of the near-horizon
microstates of the heat bath. In field theory, the leading
contribution to the thermal entropy is quadratically diver-
gent in the ultraviolet [5] and is proportional to the area
of the horizon. If the cutoff is of the order of the Planck
length, then the thermal entropy is of the right order of
magnitude to be identified with the Bekenstein-Hawking
entropy.

In the context of field theory, there are several difficulties
with this appealing idea. For example, the thermal entropy
depends on an arbitrary cutoff and its precise identification
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with the Planck length is not clear. The thermal entropy
depends on the species and the couplings of the various
particles in the theory, whereas the black hole entropy is
species independent. Finally, since the thermal entropy al-
ways starts at one loop, it is difficult to see how it can pos-
sibly account for the tree level black hole entropy which
is inversely proportional to the coupling constant. ’t Hooft
has argued that it is necessary to understand the ultravio-
let structure of the theory to address these questions, and
therefore these difficulties will be resolved in the correct
short-distance theory of quantum gravity.

In string theory, ultraviolet divergences are expected to
be appropriately controlled, and Susskind, in particular,
has argued that string theory offers a suitable framework
for realizing this proposal [6]. We will pursue these ideas
further by considering string theory on the near horizon
geometry in Euclidean formalism following earlier work
in [11,12].

Strings on a cone.—Consider a Schwarzschild black
hole in four dimensions with a large mass M. The metric
is given by

ds2 � 2

µ
1 2

2GM

r

∂
dt2 1

µ
1 2

2GM

r

∂21

dr2 1 r2dV2.

(2)

We are interested in the thermal entropy of string modes
in this background near the horizon as seen by a
Schwarzschild observer. To focus on the near-horizon re-
gion we choose coordinates r �

p
8GM�r 2 2GM� and

h �
lt

2GM in which the metric becomes

ds2 � 2

µ
r

l

∂2

dh2 1 dr2 1 �2GM�2dV2. (3)

Here l is an arbitrary parameter that sets the length scale
which in our context will be taken to be the string length.
We see from the form of the metric that r measures the
proper distance from the horizon at r � 0 and h is the
proper time measured by a Schwarzschild observer located
at a proper distance r � l. We will refer to this location as
the “stretched horizon.” Energy at the stretched horizon is
related to asymptotic energy by the redshift factor l�4GM.

In the limit GM ¿ l, the two-sphere at the horizon
can be approximated by a flat two-dimensional transverse
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space and then the space has flat Minkowski geometry.
Thus, in this limit, the Schwarzschild observers are ex-
actly like Rindler observers in uniform acceleration in
Minkowski space. More generally, for a d-dimensional
black hole, the near horizon geometry is given by the
d-dimensional Rindler metric with topology R2 3 Rd22,

ds2 � 2r2dh2 1 dr2 1

d22X
i�1

�dxi�2, (4)

where xi are the coordinates of the �d 2 2�-dimensional
transverse space and we have chosen units to set l � 1.

The observer at the stretched horizon sees a thermal
bath at Rindler temperature T �

1
2p which, as usual, is

inversely proportional to the periodicity of Euclidean time.
Under Euclidean continuation, h � 2iu, the metric in the
R2 factor is given by the flat metric in polar coordinates,

ds2 � r2dt2 1 dr2. (5)

The Euclidean time t is thus an angular variable and, when
its periodicity is 2p corresponding to the Rindler tem-
perature, the metric is smooth at the origin. The Rindler
temperature at the stretched horizon is redshifted to the
Hawking temperature TH �

1
8pGM seen by the asymptotic

observer.
The partition function Z of this thermal bath in string

theory would be given by a functional integral of all string
modes on the Euclidean Rindler space. The thermal en-
tropy of this heat bath S would be given, as usual, by
S � 2

≠F
≠T as a derivative of the free energy, F � 2T lnZ.

Therefore, to calculate the entropy, we need to find the
variation in the free energy of a string gas to order d as we
vary the temperature seen by the observer at the stretched
horizon to 1

2p 1 d. Changing the temperature changes the
periodicity of Euclidean time in (5) to 2p 2 d to lead-
ing order. The Euclidean geometry is now conical with
deficit angle d and with a curvature singularity at the tip of
the cone.

One of the difficulties in evaluating the partition function
for strings on a cone with arbitrary deficit angle is that the
cone is not a solution of the string equations of motion.
The Einstein equation is not satisfied unless there is an
explicit source at the tip to account for the curvature. One
would thus require an off-shell formulation of string theory
to evaluate this partition function.

We will instead proceed differently. We will consider
string theory on a cone obtained as an orbifold C�ZN in
[11–13]. This corresponds to the temperature T �

N
2p

at the stretched horizon and the deficit angle is d � 2p 3

�1 2
1
N �. Because the orbifold is a conformal field theory,

for these special values of the deficit angle labeled by an
integer the tree-level string equations of motion are indeed
satisfied. In addition to the bulk modes, there are states
from N 2 1 twisted sectors labeled by k � 1, . . . , N 2 1.
We will take both k and N to be odd to simplify the subse-
quent discussion. The ground state in each sector is tachy-
onic and its mass is given by a0m2 � 22�1 2 k�N �. In
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the next section we evaluate the free energy F�N� as a
function of N by properly taking into account infrared di-
vergences due to the tachyons and then compute the en-
tropy analytically continuing in N .

Tachyon condensation and black hole entropy.—The
one-loop partition function for strings on the orbifold
C�ZN can be easily written down. It is modular invariant
and therefore ultraviolet finite as expected for a string
partition function. This is already an improvement over
the field theory calculation which was UV divergent.
However, the partition function has severe infrared diver-
gences because of the tachyons.

Infrared divergences, unlike ultraviolet divergences,
are not a matter of renormalization but signify important
physics. In this context, the existence of tachyons in the
spectrum suggests that the thermal ensemble is unstable.
It was speculated in [11,12] that these tachyons can
condense, causing a phase transition, and the latent heat of
this transition could account for the tree level black hole
entropy. However, in the absence of a good candidate for
the end point of tachyon condensation, it was not possible
to pursue this further.

The recent work of Adams, Polchinski, and Silverstein
[14] has provided new insights into the condensation of
these tachyons. They have argued that tachyon condensa-
tion relaxes the cone to flat space. The most convincing
evidence for this claim comes from the geometry seen by
a D-brane probe in the substringy regime. In the probe
theory, one can identify operators with the right quantum
numbers under the quantum ZN symmetry of the orbifold
that correspond to turning on tachyonic vevs. By selec-
tively turning on specific tachyons, the quiver theory of the
probe can be “annealed” to successively go from the ZN

orbifold to lower ZN22 orbifold all the way to flat space.
The deficit angle seen by the probe in this case changes
appropriately from 2p�1 2

1
N � to 2p�1 2

1
N22 �.

These results are consistent with the assumption that in
the field space of tachyons there is a potential V �T� where
we collectively denote all tachyons by T . The ZN orbifold
sits at the top of this potential, the various ZM orbifolds
with M , N are the other extrema of this tachyonic poten-
tial, and flat space is at the bottom of this potential. Such
a potential can also explain why a conformal field theory
exists only for special values of deficit angles. We will be
concerned here with the static properties such as the end
point of tachyon condensation and the effective height of
the tachyon potential and not so much with dynamical de-
tails of the process of condensation.

Let us return now to the computation of the black hole
entropy. We would like to evaluate the free energy of a ZN

orbifold as a function of N . Now, the existence of tachyons
in the orbifold implies that we are expanding the string
field theory functional integral around a maximum. The
asymptotic expansion provided by string perturbation the-
ory around this point is as a result infrared (IR) divergent
and essentially useless. To correctly evaluate the partition
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function, we must expand around the stable saddle point at
the minimum of the potential. The leading semiclassical
contribution to the partition function will be given by
Z � exp 2SE where SE is the classical Euclidean action
after condensation. To elaborate this point let us consider
a toy model in field theory of a single scalar field f with
double well potential 2m2f2 1 g2f4. The perturbative
expansion for the partition function around f � 0 is IR di-
vergent, which signifies that we have expanded around the
wrong saddle point. The stable saddle point is at f2 �

m2

2g2

and the leading semiclassical contribution to the partition
function will be given by Z � exp 2SE where SE �

2m4

4g2

is the change in the classical Euclidean action after
condensation.

It may seem difficult to evaluate the change in the clas-
sical action between the ZN orbifold and flat space but
we are helped by the fact that, for the orbifold conformal
field theory, the equations of motion for the dilaton and the
graviton are satisfied exactly. To extract this information,
let us consider the Lorentzian string effective action, for
concreteness, first to leading order in a0,

S �
1

16pG

Z
M

p
2g e22f�R 1 4�=f�2 2 d2�x�V�T��

1
1

8pG

Z
≠M

p
2g e22fK , (6)

where K is the extrinsic curvature and d2�x�V�T� denotes
the tachyon potential localized at the tip of the cone. The
extrinsic curvature term is as usual necessary to ensure
that the effective action reproduces the string equations
of motion for variations df and dg that vanish at the
boundary.

The action is very similar to the one for a cosmic string
in four dimensions. The tachyon potential supplies an
8-brane source term for gravity. Einstein equations imply
R � d2�x�V�T� and therefore a conical curvature singu-
larity at x � 0. Because of this equality, there is no source
term for the dilaton and as a result the dilaton equations
are satisfied with a constant dilaton. We see that the bulk
contribution to the action is zero for the solution. The
boundary has topology R8 3 S1. For a cone, the circle
S1 has radius r but the angular variable will go from 0
to 2p

N . The extrinsic curvature for the circle equals 1�r
and thus the contribution to the action from the boundary
term equals A

4GN . We have to remember a factor of 2i in
Euclidean continuation of

p
2g.

In the conformal field theory, we should worry about the
higher order a0 corrections to the effective action. These
corrections are dependent on field redefinitions or equiva-
lently on the renormalization scheme of the world-sheet
sigma model. However, the total contribution of these cor-
rections to bulk action must, nevertheless, vanish for the
orbifold because we know that the equations of motion of
the dilaton are satisfied with a constant dilaton which im-
plies no source terms for the dilaton in the bulk. Thus, the
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entire contribution to the action comes from the boundary
term even when the a0 corrections are taken into account
and we can reliably calculate it in a scheme independent
way using the conical geometry of the exact solution at the
boundary.

From the change in the classical action between the
ZN orbifold and flat space, we can calculate the leading
semiclassical contribution to the free energy up to an
N -independent additive constant:

F�N � � 2
A

4G
�N 2 1�

2p
. (7)

The resulting entropy is

S � 22p
≠F�N �

≠N
�

A
4G

, (8)

which is in precise agreement with the Bekenstein-
Hawking entropy. Note that the entropy is independent of
N even though the latent heat scales with N .

Unlike the change in the classical action, the height of
the tachyon potential is dependent on the renormalization
scheme. It seems likely, however, that there exists a par-
ticular renormalization scheme of the N � 2 supersym-
metric sigma model of the cone in which the beta function
equations are reproduced exactly by (6) to all orders in a0

and not just to leading order. This would be analogous
to Calabi-Yau compactifications where one can argue that
there always exists a scheme in which the metric is Ricci
flat [15]. In such a renormalization scheme, the dilaton
would be constant; the metric would be precisely conical
as for the exact solution of the orbifold. In this scheme,
the height of the tachyon potential mN for the ZN would
then be directly related to the deficit angle d of the solution
using Einstein equations from (6) and would be given by

mN � 2d � 4p

µ
1 2

1
N

∂
. (9)

It would be interesting to verify this prediction in some
form of closed string field theory if the scheme dependence
can somehow be taken into account.

Conclusions and discussion.—We end with a few com-
ments and open problems. The calculation here may seem
similar to the calculation of Gibbons and Hawking [16] or
Teitelboim [17] where the entropy comes from the classi-
cal gravitational action. However, conceptually, it is funda-
mentally different. The Gibbons and Hawking calculation
in canonical gravity is in an effective low energy theory
and is insensitive to the high energy modes. In canonical
gravity, a cone is not a saddle point. One can introduce en-
ergy density m as a chemical potential for holding the area
of the horizon fixed and then the cone of arbitrary deficit
angle can be a saddle point [6,17]. But this chemical po-
tential is not related to the potential of any dynamical field.
There are no IR divergences in these calculations and the
UV divergences simply renormalize Newton’s constant in
the effective theory.
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Somehow, string theory, as a more complete theory of
gravity, automatically supplies additional tachyonic fields
at the Euclidean horizon. The string partition function is a
functional integral over the bulk fields such as the metric as
well as the twisted fields including the tachyons and thus
is clearly different from the Gibbons and Hawking path
integral. The cone is now a saddle point of the full string
equations of motion only for integer N but without having
to introduce any chemical potential by hand. The UV
finite partition function is now IR divergent, which implies
a dynamical instability. One of the main motivations of
this paper is to take seriously the dynamics of the new
fields supplied by string theory. This dynamics at the tip
seems to capture the physics of the heat bath close to the
horizon. The entropy computed this way is universal in
that it does not depend on what bulk theory we started with
but is determined entirely by the potential of the tachyonic
degrees of freedom near the horizon.

The UV divergence of entropy in field theory is inti-
mately related to the puzzle of loss of information in black
hole evaporation. If the entropy does have a statistical in-
terpretation in terms of counting of states, then its diver-
gence would suggest an infinite number of states associated
with a finite mass black hole. As long as the black hole
has an event horizon, it can apparently store an arbitrary
amount of information in terms of correlations between
the outgoing radiation and the high energy modes near the
horizon. When the horizon eventually disappears, the in-
formation in these correlations is irretrievably lost. Finite-
ness of the entropy as we have found both in UV and IR,
on the other hand, implies unitary evolution without infor-
mation loss.

The tachyons at the tip of the cone are very similar to the
thermal tachyons in string theory at finite temperature that
come from the winding modes around the Euclidean time
direction [18,19]. They cannot be interpreted as states in
the spectrum but are rather new order-parameter fields.
In the Lorentzian continuation, the tachyon condensate
near the tip of the cone would seem to imply a Hagedorn-
like phase near the Lorentzian horizon reminiscent of the
“membrane paradigm” [20]. Apparently, the entropy of
this phase accounts for the black hole entropy. A useful
analogy is the deconfinement transition in large N QCD.
It is as though we are able to identify the order parameter
for the deconfinement transition in the form of tachyons
and compute the latent heat of the transition precisely from
the potential to find a tree level contribution of order N2

that is suggestive of gluon degrees of freedom. It would
be desirable to figure out in a Hamiltonian formalism, the
analog of the gluon degrees of freedom. Since the ther-
mal entropy accounts for the entire tree-level entropy, it
suggests that the Einstein action is wholly induced by the
091301-4
interactions of the UV degrees of freedom. Matrix theory
[21] or a gauge theory dual [22] may be the right frame-
work to address this question. It is interesting to explore
the tachyon landscape irrespective of the problem of black
hole entropy and to verify the form of the potential in a
closed string field theory. It would also be interesting to
pursue the implications of these results for the Hagedorn
transition in string theory [23] as well as for holography
[22,24,25].
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[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); 9, 3292
(1974).

[2] S. W. Hawking, Phys. Rev. D 14, 2460 (1976); Commun.
Math. Phys. 43, 199 (1975); Commun. Math. Phys. 87, 395
(1982).

[3] A. Sen, Mod. Phys. Lett. A 10, 2081 (1995).
[4] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[5] G. ’t Hooft, Nucl. Phys. B256, 727 (1985).
[6] L. Susskind, Phys. Rev. D 49, 6606 (1994); Phys. Rev.

Lett. 71, 2367 (1993); hep-th/9309145.
[7] W. H. Zurek and K. S. Thorne, Phys. Rev. Lett. 54, 2171

(1985).
[8] L. Bombelli, R. Koul, J. Lee, and R. Sorkin, Phys. Rev. D

34, 373 (1986).
[9] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

[10] C. Callan and F. Wilczek, Phys. Lett. B 333, 55 (1994).
[11] A. Dabholkar, Nucl. Phys. B439, 650 (1995).
[12] A. Dabholkar, Phys. Lett. B 347, 222 (1995).
[13] D. Lowe and A. Strominger, Phys. Rev. D 51, 1793 (1995).
[14] A. Adams, J. Polchinski, and E. Silverstein, J. High Energy

Phys. 110, 29 (2001).
[15] D. Nemeschansky and A. Sen, Phys. Lett. B 178, 365

(1986).
[16] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752

(1977); S. W. Hawking, Phys. Rev. D 18, 1747 (1978).
[17] M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.

72, 957 (1994); S. Carlip and C. Teitelboim, Classical
Quantum Gravity 12, 1699 (1995).

[18] B. Sathiapalan, Phys. Rev. D 35, 3277 (1987).
[19] Ya. I. Kogan, JETP Lett. 45, 709 (1987).
[20] The Membrane Paradigm, edited by K. Thorne, R. Price,

and D. Macdonald (Yale University Press, New Haven, CT,
1986).

[21] T. Banks, W. Fischler, S. Shenker, and L. Susskind, Phys.
Rev. D 55, 5112 (1997).

[22] O. Aharony, S. Gubser, J. Maldacena, and H. Ooguri, Phys.
Rep. 323, 183 (2000).

[23] J. Atick and E. Witten, Nucl. Phys. B310, 291 (1988).
[24] G. ’t Hooft, gr-qc/9310026.
[25] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).
091301-4


